江苏省江苏省大丰市万盈初级中学2022年中考数学押题卷含解析
展开这是一份江苏省江苏省大丰市万盈初级中学2022年中考数学押题卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.已知:a、b是不等于0的实数,2a=3b,那么下列等式中正确的是( )
A. B. C. D.
2.如图,一圆弧过方格的格点A、B、C,在方格中建立平面直角坐标系,使点A的坐标为(﹣3,2),则该圆弧所在圆心坐标是( )
A.(0,0) B.(﹣2,1) C.(﹣2,﹣1) D.(0,﹣1)
3.“一般的,如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.——苏科版《数学》九年级(下册)P21”参考上述教材中的话,判断方程x2﹣2x=﹣2实数根的情况是 ( )
A.有三个实数根 B.有两个实数根 C.有一个实数根 D.无实数根
4.已知点,与点关于轴对称的点的坐标是( )
A. B. C. D.
5.如图,下列四个图形是由已知的四个立体图形展开得到的,则对应的标号是
A. B. C. D.
6.如图,在平面直角坐标系中,矩形ABOC的两边在坐标轴上,OB=1,点A在函数y=﹣(x<0)的图象上,将此矩形向右平移3个单位长度到A1B1O1C1的位置,此时点A1在函数y=(x>0)的图象上,C1O1与此图象交于点P,则点P的纵坐标是( )
A. B. C. D.
7.如图,A、B、C是⊙O上的三点,∠BAC=30°,则∠BOC的大小是( )
A.30° B.60° C.90° D.45°
8.如图所示,点E是正方形ABCD内一点,把△BEC绕点C旋转至△DFC位置,则∠EFC的度数是( )
A.90° B.30° C.45° D.60°
9.如图,△ABC中,AB=AC=15,AD平分∠BAC,点E为AC的中点,连接DE,若△CDE的周长为21,则BC的长为( )
A.16 B.14 C.12 D.6
10.如果m的倒数是﹣1,那么m2018等于( )
A.1 B.﹣1 C.2018 D.﹣2018
11.函数的图像位于( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
12.如图是某几何体的三视图,则该几何体的全面积等于( )
A.112 B.136 C.124 D.84
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.分式方程的解是_____.
14.计算:________.
15.如图,在矩形ABCD中,E是AD上一点,把△ABE沿直线BE翻折,点A正好落在BC边上的点F处,如果四边形CDEF和矩形ABCD相似,那么四边形CDEF和矩形ABCD面积比是__.
16.分解因式:x3y﹣2x2y+xy=______.
17.若点A(1,m)在反比例函数y=的图象上,则m的值为________.
18.如图,直线a∥b,∠BAC的顶点A在直线a上,且∠BAC=100°.若∠1=34°,则∠2=_____°.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)计算:(﹣2)﹣2﹣sin45°+(﹣1)2018﹣÷2
20.(6分)如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=1.求抛物线的函数表达式.当t为何值时,矩形ABCD的周长有最大值?最大值是多少?保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.
21.(6分)某校学生会准备调查六年级学生参加“武术类”、“书画类”、“棋牌类”、“器乐类”四类校本课程的人数.
(1)确定调查方式时,甲同学说:“我到六年级(1)班去调查全体同学”;乙同学说:“放学时我到校门口随机调查部分同学”;丙同学说:“我到六年级每个班随机调查一定数量的同学”.请指出哪位同学的调查方式最合理.
类别
频数(人数)
频率
武术类
0.25
书画类
20
0.20
棋牌类
15
b
器乐类
合计
a
1.00
(2)他们采用了最为合理的调查方法收集数据,并绘制了如图所示的统计表和扇形统计图.
请你根据以上图表提供的信息解答下列问题:
①a=_____,b=_____;
②在扇形统计图中,器乐类所对应扇形的圆心角的度数是_____;
③若该校六年级有学生560人,请你估计大约有多少学生参加武术类校本课程.
22.(8分)如图,在平面直角坐标中,点O是坐标原点,一次函数y1=kx+b与反比例函数y2=的图象交于A(1,m)、B(n,1)两点.
(1)求直线AB的解析式;
(2)根据图象写出当y1>y2时,x的取值范围;
(3)若点P在y轴上,求PA+PB的最小值.
23.(8分)如图是一副扑克牌中的四张牌,将它们正面向下冼均匀,从中任意抽取两张牌,用画树状图(或列表)的方法,求抽出的两张牌牌面上的数字之和都是偶数的概率.
24.(10分)如图,甲、乙为两座建筑物,它们之间的水平距离BC为30m,在A点测得D点的仰角∠EAD为45°,在B点测得D点的仰角∠CBD为60°.求这两座建筑物的高度(结果保留根号).
25.(10分)如图,益阳市梓山湖中有一孤立小岛,湖边有一条笔直的观光小道AB,现决定从小岛架一座与观光小道垂直的小桥PD,小张在小道上测得如下数据:AB=80.0米,∠PAB=38.1°,∠PBA=26.1.请帮助小张求出小桥PD的长并确定小桥在小道上的位置.(以A,B为参照点,结果精确到0.1米)
(参考数据:sin38.1°=0.62,cos38.1°=0.78,tan38.1°=0.80,sin26.1°=0.41,cos26.1°=0.89,tan26.1°=0.10)
26.(12分)如图,点D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.判断直线CD和⊙O的位置关系,并说明理由.过点B作⊙O的切线BE交直线CD于点E,若AC=2,⊙O的半径是3,求BE的长.
27.(12分)某商城销售A,B两种自行车型自行车售价为2 100元辆,B型自行车售价为1 750元辆,每辆A型自行车的进价比每辆B型自行车的进价多400元,商城用80 000元购进A型自行车的数量与用64 000元购进B型自行车的数量相等.
求每辆A,B两种自行车的进价分别是多少?
现在商城准备一次购进这两种自行车共100辆,设购进A型自行车m辆,这100辆自行车的销售总利润为y元,要求购进B型自行车数量不超过A型自行车数量的2倍,总利润不低于13 000元,求获利最大的方案以及最大利润.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
∵2a=3b,∴ ,∴ ,∴A、C、D选项错误,B选项正确,
故选B.
2、C
【解析】
如图:分别作AC与AB的垂直平分线,相交于点O,
则点O即是该圆弧所在圆的圆心.
∵点A的坐标为(﹣3,2),
∴点O的坐标为(﹣2,﹣1).
故选C.
3、C
【解析】
试题分析:由得,,即是判断函数与函数的图象的交点情况.
因为函数与函数的图象只有一个交点
所以方程只有一个实数根
故选C.
考点:函数的图象
点评:函数的图象问题是初中数学的重点和难点,是中考常见题,在压轴题中比较常见,要特别注意.
4、C
【解析】
根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.
【详解】
解:点,与点关于轴对称的点的坐标是,
故选:C.
【点睛】
本题考查了关于y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.
5、B
【解析】
根据常见几何体的展开图即可得.
【详解】
由展开图可知第一个图形是②正方体的展开图,
第2个图形是①圆柱体的展开图,
第3个图形是③三棱柱的展开图,
第4个图形是④四棱锥的展开图,
故选B
【点睛】
本题考查的是几何体,熟练掌握几何体的展开面是解题的关键.
6、C
【解析】
分析:先求出A点坐标,再根据图形平移的性质得出A1点的坐标,故可得出反比例函数的解析式,把O1点的横坐标代入即可得出结论.
详解:∵OB=1,AB⊥OB,点A在函数 (x<0)的图象上,
∴当x=−1时,y=2,
∴A(−1,2).
∵此矩形向右平移3个单位长度到的位置,
∴B1(2,0),
∴A1(2,2).
∵点A1在函数 (x>0)的图象上,
∴k=4,
∴反比例函数的解析式为,O1(3,0),
∵C1O1⊥x轴,
∴当x=3时,
∴P
故选C.
点睛:考查反比例函数图象上点的坐标特征, 坐标与图形变化-平移,解题的关键是运用双曲线方程求出点A的坐标,利用平移的性质求出点A1的坐标.
7、B
【解析】
【分析】欲求∠BOC,又已知一圆周角∠BAC,可利用圆周角与圆心角的关系求解.
【详解】∵∠BAC=30°,
∴∠BOC=2∠BAC =60°(同弧所对的圆周角是圆心角的一半),
故选B.
【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
8、C
【解析】
根据正方形的每一个角都是直角可得∠BCD=90°,再根据旋转的性质求出∠ECF=∠BCD=90°,CE=CF,然后求出△CEF是等腰直角三角形,然后根据等腰直角三角形的性质解答.
【详解】
∵四边形ABCD是正方形,
∴∠BCD=90°,
∵△BEC绕点C旋转至△DFC的位置,
∴∠ECF=∠BCD=90°,CE=CF,
∴△CEF是等腰直角三角形,
∴∠EFC=45°.
故选:C.
【点睛】
本题目是一道考查旋转的性质问题——每对对应点到旋转中心的连线的夹角都等于旋转角度,每对对应边相等,故 为等腰直角三角形.
9、C
【解析】
先根据等腰三角形三线合一知D为BC中点,由点E为AC的中点知DE为△ABC中位线,故△ABC的周长是△CDE的周长的两倍,由此可求出BC的值.
【详解】
∵AB=AC=15,AD平分∠BAC,
∴D为BC中点,
∵点E为AC的中点,
∴DE为△ABC中位线,
∴DE=AB,
∴△ABC的周长是△CDE的周长的两倍,由此可求出BC的值.
∴AB+AC+BC=42,
∴BC=42-15-15=12,
故选C.
【点睛】
此题主要考查三角形的中位线定理,解题的关键是熟知等腰三角形的三线合一定理.
10、A
【解析】
因为两个数相乘之积为1,则这两个数互为倒数, 如果m的倒数是﹣1,则m=-1,
然后再代入m2018计算即可.
【详解】
因为m的倒数是﹣1,
所以m=-1,
所以m2018=(-1)2018=1,故选A.
【点睛】
本题主要考查倒数的概念和乘方运算,解决本题的关键是要熟练掌握倒数的概念和乘方运算法则.
11、D
【解析】
根据反比例函数中,当,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大,进而得出答案.
【详解】
解:函数的图象位于第四象限.
故选:D.
【点睛】
此题主要考查了反比例函数的性质,正确记忆反比例函数图象分布的象限是解题关键.
12、B
【解析】
试题解析:该几何体是三棱柱.
如图:
由勾股定理
全面积为:
故该几何体的全面积等于1.
故选B.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、x=13
【解析】
解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.
【详解】
,
去分母,可得x﹣5=8,
解得x=13,
经检验:x=13是原方程的解.
【点睛】
本题主要考查了解分式方程,解分式方程时,去分母后所得整式方程的解有可能使原方程中的分母为0,所以应检验.
14、
【解析】
根据二次根式的运算法则先算乘法,再将分母有理化,然后相加即可.
【详解】
解:原式=
=
【点睛】
本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
15、
【解析】
由题意易得四边形ABFE是正方形,
设AB=1,CF=x,则有BC=x+1,CD=1,
∵四边形CDEF和矩形ABCD相似,
∴CD:BC=FC:CD,
即1:(x+1)=x:1,
∴x=或x=(舍去),
∴ =,
故答案为.
【点睛】本题考查了折叠的性质,相似多边形的性质等,熟练掌握相似多边形的面积比等于相似比的平方是解题的关键.
16、xy(x﹣1)1
【解析】
原式提取公因式,再利用完全平方公式分解即可.
【详解】
解:原式=xy(x1-1x+1)=xy(x-1)1.
故答案为:xy(x-1)1
【点睛】
此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
17、3
【解析】
试题解析:把A(1,m)代入y=得:m=3.
所以m的值为3.
18、46
【解析】
试卷分析:根据平行线的性质和平角的定义即可得到结论.
解:∵直线a∥b,
∴∠3=∠1=34°,
∵∠BAC=100°,
∴∠2=180°−34°−100°=46°,
故答案为46°.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、
【解析】
按照实数的运算顺序进行运算即可.
【详解】
解:原式
【点睛】
本题考查实数的运算,主要考查零次幂,负整数指数幂,特殊角的三角函数值以及立方根,熟练掌握各个知识点是解题的关键.
20、(1);(2)当t=1时,矩形ABCD的周长有最大值,最大值为;(3)抛物线向右平移的距离是1个单位.
【解析】
(1)由点E的坐标设抛物线的交点式,再把点D的坐标(2,1)代入计算可得;
(2)由抛物线的对称性得BE=OA=t,据此知AB=10-2t,再由x=t时AD=,根据矩形的周长公式列出函数解析式,配方成顶点式即可得;
(3)由t=2得出点A、B、C、D及对角线交点P的坐标,由直线GH平分矩形的面积知直线GH必过点P,根据AB∥CD知线段OD平移后得到的线段是GH,由线段OD的中点Q平移后的对应点是P知PQ是△OBD中位线,据此可得.
【详解】
(1)设抛物线解析式为,
当时,,
点的坐标为,
将点坐标代入解析式得,
解得:,
抛物线的函数表达式为;
(2)由抛物线的对称性得,
,
当时,,
矩形的周长
,
,
,
,
当时,矩形的周长有最大值,最大值为;
(3)如图,
当时,点、、、的坐标分别为、、、,
矩形对角线的交点的坐标为,
直线平分矩形的面积,
点是和的中点,
,
由平移知,
是的中位线,
,
所以抛物线向右平移的距离是1个单位.
【点睛】
本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、二次函数的性质及平移变换的性质等知识点.
21、(1)见解析; (2)① a=100,b=0.15; ②144°;③140人.
【解析】
(1)采用随机调查的方式比较合理,随机调查的关键是调查的随机性,这样才合理;
(2)①用喜欢书画类的频数除以喜欢书画类的频率即可求得a值,用喜欢棋牌类的人数除以总人数即可求得b值.②求得器乐类的频率乘以360°即可.③用总人数乘以喜欢武术类的频率即可求喜欢武术的总人数.
【详解】
(1)∵调查的人数较多,范围较大,
∴应当采用随机抽样调查,
∵到六年级每个班随机调查一定数量的同学相对比较全面,
∴丙同学的说法最合理.
(2)①∵喜欢书画类的有20人,频率为0.20,
∴a=20÷0.20=100,
b=15÷100=0.15;
②∵喜欢器乐类的频率为:1﹣0.25﹣0.20﹣0.15=0.4,
∴喜欢器乐类所对应的扇形的圆心角的度数为:360×0.4=144°;
③喜欢武术类的人数为:560×0.25=140人.
【点睛】
本题考查了用样本估计总体和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.
22、(1)y=﹣x+4;(2)1<x<1;(1)2.
【解析】
(1)依据反比例函数y2= (x>0)的图象交于A(1,m)、B(n,1)两点,即可得到A(1,1)、B(1,1),代入一次函数y1=kx+b,可得直线AB的解析式;
(2)当1<x<1时,正比例函数图象在反比例函数图象的上方,即可得到当y1>y2时,x的取值范围是1<x<1;
(1)作点A关于y轴的对称点C,连接BC交y轴于点P,则PA+PB的最小值等于BC的长,利用勾股定理即可得到BC的长.
【详解】
(1)A(1,m)、B(n,1)两点坐标分别代入反比例函数y2= (x>0),可得
m=1,n=1,
∴A(1,1)、B(1,1),
把A(1,1)、B(1,1)代入一次函数y1=kx+b,可得
,解得,
∴直线AB的解析式为y=-x+4;
(2)观察函数图象,发现:
当1<x<1时,正比例函数图象在反比例函数图象的上方,
∴当y1>y2时,x的取值范围是1<x<1.
(1)如图,作点A关于y轴的对称点C,连接BC交y轴于点P,则PA+PB的最小值等于BC的长,
过C作y轴的平行线,过B作x轴的平行线,交于点D,则
Rt△BCD中,BC=,
∴PA+PB的最小值为2.
【点睛】
本题考查的是反比例函数与一次函数的交点问题,根据函数图象的上下位置关系结合交点的横坐标,得出不等式的取值范围是解答此题的关键.
23、
【解析】
根据列表法先画出列表,再求概率.
【详解】
解:列表如下:
2
3
5
6
2
(2,3)
(2,5)
(2,6)
3
(3,2)
(3,5)
(3,6)
5
(5,2)
(5,3)
(5,6)
6
(6,2)
(6,3)
(6,5)
由表可知共有12种等可能结果,其中数字之和为偶数的有4种,
所以P(数字之和都是偶数).
【点睛】
此题重点考查学生对概率的应用,掌握列表法是解题的关键.
24、甲建筑物的高AB为(30-30)m,乙建筑物的高DC为30m
【解析】
如图,过A作AF⊥CD于点F,
在Rt△BCD中,∠DBC=60°,BC=30m,
∵=tan∠DBC,
∴CD=BC•tan60°=30m,
∴乙建筑物的高度为30m;
在Rt△AFD中,∠DAF=45°,
∴DF=AF=BC=30m,
∴AB=CF=CD﹣DF=(30﹣30)m,
∴甲建筑物的高度为(30﹣30)m.
25、49.2米
【解析】
设PD=x米,在Rt△PAD中表示出AD,在Rt△PDB中表示出BD,再由AB=80.0米,可得出方程,解出即可得出PD的长度,继而也可确定小桥在小道上的位置.
【详解】
解:设PD=x米,
∵PD⊥AB,∴∠ADP=∠BDP=90°.
在Rt△PAD中,,∴.
在Rt△PBD中,,∴.
又∵AB=80.0米,∴,解得:x≈24.6,即PD≈24.6米.
∴DB=2x=49.2米.
答:小桥PD的长度约为24.6米,位于AB之间距B点约49.2米.
26、解:(1)直线CD和⊙O的位置关系是相切,理由见解析
(2)BE=1.
【解析】
试题分析:(1)连接OD,可知由直径所对的圆周角是直角可得∠DAB+∠DBA=90°,再由∠CDA=∠CBD可得∠CDA+∠ADO=90°,从而得∠CDO=90°,根据切线的判定即可得出;
(2)由已知利用勾股定理可求得DC的长,根据切线长定理有DE=EB,根据勾股定理得出方程,求出方程的解即可.
试题解析:(1)直线CD和⊙O的位置关系是相切,
理由是:连接OD,
∵AB是⊙O的直径,
∴∠ADB=90°,
∴∠DAB+∠DBA=90°,
∵∠CDA=∠CBD,
∴∠DAB+∠CDA=90°,
∵OD=OA,
∴∠DAB=∠ADO,
∴∠CDA+∠ADO=90°,
即OD⊥CE,
∴直线CD是⊙O的切线,
即直线CD和⊙O的位置关系是相切;
(2)∵AC=2,⊙O的半径是3,
∴OC=2+3=5,OD=3,
在Rt△CDO中,由勾股定理得:CD=4,
∵CE切⊙O于D,EB切⊙O于B,
∴DE=EB,∠CBE=90°,
设DE=EB=x,
在Rt△CBE中,由勾股定理得:CE2=BE2+BC2,
则(4+x)2=x2+(5+3)2,
解得:x=1,
即BE=1.
考点:1、切线的判定与性质;2、切线长定理;3、勾股定理;4、圆周角定理
27、(1)每辆A型自行车的进价为2 000元,每辆B型自行车的进价为1 600元;(2)当购进A型自行车34辆,B型自行车66辆时获利最大,最大利润为13300元.
【解析】
(1)设每辆B型自行车的进价为x元,则每辆A型自行车的进价为(x+10)元,根据题意列出方程,求出方程的解即可得到结果;
(2)由总利润=单辆利润×辆数,列出y与x的关系式,利用一次函数性质确定出所求即可.
【详解】
(1)设每辆B型自行车的进价为x元,则每辆A型自行车的进价为(x+10)元,
根据题意,得=,
解得x=1600,
经检验,x=1600是原方程的解,
x+10=1 600+10=2 000,
答:每辆A型自行车的进价为2 000元,每辆B型自行车的进价为1 600元;
(2)由题意,得y=(2100﹣2000)m+(1750﹣1600)(100﹣m)=﹣50m+15000,
根据题意,得,
解得:33≤m≤1,
∵m为正整数,
∴m=34,35,36,37,38,39,1.
∵y=﹣50m+15000,k=﹣50<0,
∴y随m的增大而减小,∴当m=34时,y有最大值,
最大值为:﹣50×34+15000=13300(元).
答:当购进A型自行车34辆,B型自行车66辆时获利最大,最大利润为13300元.
【点睛】
本题主要考查一次函数的应用、分式方程的应用及一元一次不等式组的应用.仔细审题,找出题目中的数量关系是解答本题的关键.
相关试卷
这是一份江苏省江苏省大丰市万盈初级中学2023-2024学年数学九上期末联考模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,关于抛物线的说法中,正确的是,若,则的值为等内容,欢迎下载使用。
这是一份江苏省大丰市实验初级中学2022年中考押题数学预测卷含解析,共20页。试卷主要包含了已知下列命题,下列图案中,是轴对称图形的是等内容,欢迎下载使用。
这是一份2022届江苏省江苏省大丰市万盈初级中学中考数学模拟预测题含解析,共22页。试卷主要包含了答题时请按要求用笔,下列计算正确的是等内容,欢迎下载使用。