年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    江苏省南京市东山外国语校2021-2022学年中考数学考试模拟冲刺卷含解析

    江苏省南京市东山外国语校2021-2022学年中考数学考试模拟冲刺卷含解析第1页
    江苏省南京市东山外国语校2021-2022学年中考数学考试模拟冲刺卷含解析第2页
    江苏省南京市东山外国语校2021-2022学年中考数学考试模拟冲刺卷含解析第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省南京市东山外国语校2021-2022学年中考数学考试模拟冲刺卷含解析

    展开

    这是一份江苏省南京市东山外国语校2021-2022学年中考数学考试模拟冲刺卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,定义运算“※”为,《语文课程标准》规定等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    考生请注意:
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图,在Rt△ABC中,∠B=90°,∠A=30°,以点A为圆心,BC长为半径画弧交AB于点D,分别以点A、D为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则∠EAD的余弦值是(  )

    A. B. C. D.
    2.已知圆锥的底面半径为2cm,母线长为5cm,则圆锥的侧面积是( )
    A.20cm2 B.20πcm2 C.10πcm2 D.5πcm2
    3.某射击选手10次射击成绩统计结果如下表,这10次成绩的众数、中位数分别是(  )
    成绩(环)
    7
    8
    9
    10
    次数
    1
    4
    3
    2
    A.8、8 B.8、8.5 C.8、9 D.8、10
    4.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()

    A. B.8 C. D.
    5.利用运算律简便计算52×(–999)+49×(–999)+999正确的是
    A.–999×(52+49)=–999×101=–100899
    B.–999×(52+49–1)=–999×100=–99900
    C.–999×(52+49+1)=–999×102=–101898
    D.–999×(52+49–99)=–999×2=–1998
    6.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为( )
    A.5.6×10﹣1 B.5.6×10﹣2 C.5.6×10﹣3 D.0.56×10﹣1
    7.如图,将一张三角形纸片的一角折叠,使点落在处的处,折痕为.如果,,,那么下列式子中正确的是( )

    A. B. C. D.
    8.已知x2+mx+25是完全平方式,则m的值为(  )
    A.10 B.±10 C.20 D.±20
    9.定义运算“※”为:a※b=,如:1※(﹣2)=﹣1×(﹣2)2=﹣1.则函数y=2※x的图象大致是(  )
    A. B.
    C. D.
    10.《语文课程标准》规定:7﹣9年级学生,要求学会制订自己的阅读计划,广泛阅读各种类型的读物,课外阅读总量不少于260万字,每学年阅读两三部名著.那么260万用科学记数法可表示为(  )
    A.26×105 B.2.6×102 C.2.6×106 D.260×104
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,在3×3的正方形网格中,点A,B,C,D,E,F,G都是格点,从C,D,E,F,G五个点中任意取一点,以所取点及AB为顶点画三角形,所画三角形时等腰三角形的概率是_____.

    12.如图,网格中的四个格点组成菱形ABCD,则tan∠DBC的值为___________ .

    13.在平面直角坐标系中,智多星做走棋的游戏,其走法是:棋子从原点出发,第1步向上走1个单位,第2步向上走2个单位,第3步向右走1个单位,第4步向上走1个单位……依此类推,第n步的走法是:当n被3除,余数为2时,则向上走2个单位;当走完第2018步时,棋子所处位置的坐标是_____
    14.如图,在每个小正方形边长为的网格中,的顶点,,均在格点上,为边上的一点.
    线段的值为______________;在如图所示的网格中,是的角平分线,在上求一点,使的值最小,请用无刻度的直尺,画出和点,并简要说明和点的位置是如何找到的(不要求证明)___________.
    15.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为_______.

    16.已知线段a=4,线段b=9,则a,b的比例中项是_____.
    17.图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5=   度.

    三、解答题(共7小题,满分69分)
    18.(10分)如图,经过原点的抛物线y=﹣x2+2mx(m>0)与x轴的另一个交点为A,过点P(1,m)作直线PA⊥x轴于点M,交抛物线于点B.记点B关于抛物线对称轴的对称点为C(点B、C不重合),连接CB、CP.
    (I)当m=3时,求点A的坐标及BC的长;
    (II)当m>1时,连接CA,若CA⊥CP,求m的值;
    (III)过点P作PE⊥PC,且PE=PC,当点E落在坐标轴上时,求m的值,并确定相对应的点E的坐标.

    19.(5分)问题:将菱形的面积五等分.小红发现只要将菱形周长五等分,再将各分点与菱形的对角线交点连接即可解决问题.如图,点O是菱形ABCD的对角线交点,AB=5,下面是小红将菱形ABCD面积五等分的操作与证明思路,请补充完整.

    (1)在AB边上取点E,使AE=4,连接OA,OE;
    (2)在BC边上取点F,使BF=______,连接OF;
    (3)在CD边上取点G,使CG=______,连接OG;
    (4)在DA边上取点H,使DH=______,连接OH.由于AE=______+______=______+______=______+______=______.可证S△AOE=S四边形EOFB=S四边形FOGC=S四边形GOHD=S△HOA.
    20.(8分)先化简,再求值:,其中a满足a2+2a﹣1=1.
    21.(10分)如图,在平面直角坐标系中,直线y=kx+3与轴、轴分别相交于点A、B,并与抛物线的对称轴交于点,抛物线的顶点是点.
    (1)求k和b的值;
    (2)点G是轴上一点,且以点、C、为顶点的三角形与△相似,求点G的坐标;
    (3)在抛物线上是否存在点E:它关于直线AB的对称点F恰好在y轴上.如果存在,直接写出点E的坐标,如果不存在,试说明理由.

    22.(10分)给定关于x的二次函数y=kx2﹣4kx+3(k≠0),当该二次函数与x轴只有一个公共点时,求k的值;当该二次函数与x轴有2个公共点时,设这两个公共点为A、B,已知AB=2,求k的值;由于k的变化,该二次函数的图象性质也随之变化,但也有不会变化的性质,某数学学习小组在探究时得出以下结论:
    ①与y轴的交点不变;②对称轴不变;③一定经过两个定点;
    请判断以上结论是否正确,并说明理由.
    23.(12分)如图,△ABC内接于⊙O,CD是⊙O的直径,AB与CD交于点E,点P是CD延长线上的一点,AP=AC,且∠B=2∠P.
    (1)求证:PA是⊙O的切线;
    (2)若PD=,求⊙O的直径;
    (3)在(2)的条件下,若点B等分半圆CD,求DE的长.

    24.(14分)某商场计划购进A,B两种新型节能台灯共100盏,这两种台灯的进价、售价如下表:
    类型
    价格
    进价(元/盏)
    售价(元/盏)
    A型
    30
    45
    B型
    50
    70
    (1)若商场预计进货款为3500元,则这两种台灯各进多少盏.
    (2)若设商场购进A型台灯m盏,销售完这批台灯所获利润为P,写出P与m之间的函数关系式.
    (3)若商场规定B型灯的进货数量不超过A型灯数量的4倍,那么A型和B型台灯各进多少盏售完之后获得利润最多?此时利润是多少元.



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、B
    【解析】
    试题解析:如图所示:

    设BC=x,
    ∵在Rt△ABC中,∠B=90°,∠A=30°,
    ∴AC=2BC=2x,AB=BC=x,
    根据题意得:AD=BC=x,AE=DE=AB=x,
    作EM⊥AD于M,则AM=AD=x,
    在Rt△AEM中,cos∠EAD=;
    故选B.
    【点睛】本题考查了解直角三角形、含30°角的直角三角形的性质、等腰三角形的性质、三角函数等,通过作辅助线求出AM是解决问题的关键.
    2、C
    【解析】
    圆锥的侧面积=底面周长×母线长÷2,把相应数值代入,圆锥的侧面积=2π×2×5÷2=10π.
    故答案为C
    3、B
    【解析】
    根据众数和中位数的概念求解.
    【详解】
    由表可知,8环出现次数最多,有4次,所以众数为8环;
    这10个数据的中位数为第5、6个数据的平均数,即中位数为=8.5(环),
    故选:B.
    【点睛】
    本题考查了众数和中位数的知识,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
    4、D
    【解析】
    ∵⊙O的半径OD⊥弦AB于点C,AB=8,∴AC=AB=1.
    设⊙O的半径为r,则OC=r-2,
    在Rt△AOC中,∵AC=1,OC=r-2,
    ∴OA2=AC2+OC2,即r2=12+(r﹣2)2,解得r=2.
    ∴AE=2r=3.
    连接BE,

    ∵AE是⊙O的直径,∴∠ABE=90°.
    在Rt△ABE中,∵AE=3,AB=8,∴.
    在Rt△BCE中,∵BE=6,BC=1,∴.故选D.
    5、B
    【解析】
    根据乘法分配律和有理数的混合运算法则可以解答本题.
    【详解】
    原式=-999×(52+49-1)=-999×100=-1.
    故选B.
    【点睛】
    本题考查了有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.
    6、B
    【解析】
    0.056用科学记数法表示为:0.056=,故选B.
    7、A
    【解析】
    分析:根据三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得结论.
    详解:

    由折叠得:∠A=∠A',
    ∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',
    ∵∠A=α,∠CEA′=β,∠BDA'=γ,
    ∴∠BDA'=γ=α+α+β=2α+β,
    故选A.
    点睛:本题考查了三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键.
    8、B
    【解析】
    根据完全平方式的特点求解:a2±2ab+b2.
    【详解】
    ∵x2+mx+25是完全平方式,
    ∴m=±10,
    故选B.
    【点睛】
    本题考查了完全平方公式:a2±2ab+b2,其特点是首平方,尾平方,首尾积的两倍在中央,这里首末两项是x和1的平方,那么中间项为加上或减去x和1的乘积的2倍.
    9、C
    【解析】
    根据定义运算“※” 为: a※b=,可得y=2※x的函数解析式,根据函数解析式,可得函数图象.
    【详解】
    解:y=2※x=,
    当x>0时,图象是y=对称轴右侧的部分;
    当x<0时,图象是y=对称轴左侧的部分,
    所以C选项是正确的.
    【点睛】
    本题考查了二次函数的图象,利用定义运算“※”为: a※b=
    得出分段函数是解题关键.
    10、C
    【解析】
    科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n是负数.
    【详解】
    260万=2600000=.
    故选C.
    【点睛】
    此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.

    二、填空题(共7小题,每小题3分,满分21分)
    11、.
    【解析】
    找出从C,D,E,F,G五个点中任意取一点组成等腰三角形的个数,再根据概率公式即可得出结论.
    【详解】
    ∵从C,D,E,F,G五个点中任意取一点共有5种情况,其中A、B、C;A、B、F两种取法,可使这三定组成等腰三角形,
    ∴所画三角形时等腰三角形的概率是,
    故答案是:.
    【点睛】
    考查的是概率公式,熟记随机事件A的概率P(A)=事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键.
    12、3
    【解析】
    试题分析:如图,连接AC与BD相交于点O,∵四边形ABCD是菱形,∴AC⊥BD,BO=BD,CO=AC,由勾股定理得,AC==,BD==,所以,BO==,CO==,所以,tan∠DBC===3.故答案为3.

    考点:3.菱形的性质;3.解直角三角形;3.网格型.
    13、(672,2019)
    【解析】分析:按照题目给定的规则,找到周期,由题意可得每三步是一个循环,所以只需要计算2018被3除,就可以得到棋子的位置.
    详解:
    解:由题意得,每3步为一个循环组依次循环,且一个循环组内向右1个单位,向上3个单位,
    ∵2018÷3=672…2,
    ∴走完第2018步,为第673个循环组的第2步,
    所处位置的横坐标为672,
    纵坐标为672×3+3=2019,
    ∴棋子所处位置的坐标是(672,2019).
    故答案为:(672,2019).
    点睛:周期问题解决问题的核心是要找到最小正周期,然后把给定的数(一般是一个很大的数)除以最小正周期,余数是几,就是第几步,特别余数是1,就是第一步,余数是0,就是最后一步.
    14、(Ⅰ) (Ⅱ)如图,取格点、,连接与交于点,连接与交于点.
    【解析】
    (Ⅰ)根据勾股定理进行计算即可.
    (Ⅱ)根据菱形的每一条对角线平分每一组对角,构造边长为1的菱形ABEC,连接AE交BC于M,即可得出是的角平分线,再取点F使AF=1,则根据等腰三角形的性质得出点C与F关于AM对称,连接DF交AM于点P,此时的值最小.
    【详解】
    (Ⅰ)根据勾股定理得AC=;
    故答案为:1.
    (Ⅱ)如图,如图,取格点、,连接与交于点,连接与交于点,则点P即为所求.

    说明:构造边长为1的菱形ABEC,连接AE交BC于M,则AM即为所求的的角平分线,在AB上取点F,使AF=AC=1,则AM垂直平分CF,点C与F关于AM对称,连接DF交AM于点P,则点P即为所求.
    【点睛】
    本题考查作图-应用与设计,涉及勾股定理、菱形的判定和性质、几何变换轴对称—最短距离等知识,解题的关键是灵活运用所学知识解决问题,学会利用数形结合的思想解决问题.
    15、
    【解析】
    设⊙O半径为r,根据勾股定理列方程求出半径r,由勾股定理依次求BE和EC的长.
    【详解】
    连接BE,

    设⊙O半径为r,则OA=OD=r,OC=r-2,
    ∵OD⊥AB,
    ∴∠ACO=90°,
    AC=BC=AB=4,
    在Rt△ACO中,由勾股定理得:r2=42+(r-2)2,
    r=5,
    ∴AE=2r=10,
    ∵AE为⊙O的直径,
    ∴∠ABE=90°,
    由勾股定理得:BE=6,
    在Rt△ECB中,EC=.
    故答案是:.
    【点睛】
    考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.
    16、6
    【解析】
    根据已知线段a=4,b=9,设线段x是a,b的比例中项,列出等式,利用两内项之积等于两外项之积即可得出答案.
    【详解】
    解:∵a=4,b=9,设线段x是a,b的比例中项,
    ∴ ,
    ∴x2=ab=4×9=36,
    ∴x=6,x=﹣6(舍去).
    故答案为6
    【点睛】
    本题主要考查比例线段问题,解题关键是利用两内项之积等于两外项之积解答.
    17、360°.
    【解析】
    根据多边形的外角和等于360°解答即可.
    【详解】
    由多边形的外角和等于360°可知,
    ∠1+∠2+∠3+∠4+∠5=360°,
    故答案为360°.
    【点睛】
    本题考查的是多边形的内角和外角,掌握多边形的外角和等于360°是解题的关键.

    三、解答题(共7小题,满分69分)
    18、(I)4;(II) (III)(2,0)或(0,4)
    【解析】
    (I)当m=3时,抛物线解析式为y=-x2+6x,解方程-x2+6x=0得A(6,0),利用对称性得到C(5,5),从而得到BC的长;
    (II)解方程-x2+2mx=0得A(2m,0),利用对称性得到C(2m-1,2m-1),再根据勾股定理和两点间的距离公式得到(2m-2)2+(m-1)2+12+(2m-1)2=(2m-1)2+m2,然后解方程即可;
    (III)如图,利用△PME≌△CBP得到PM=BC=2m-2,ME=BP=m-1,则根据P点坐标得到2m-2=m,解得m=2,再计算出ME=1得到此时E点坐标;作PH⊥y轴于H,如图,利用△PHE′≌△PBC得到PH=PB=m-1,HE′=BC=2m-2,利用P(1,m)得到m-1=1,解得m=2,然后计算出HE′得到E′点坐标.
    【详解】
    解:(I)当m=3时,抛物线解析式为y=﹣x2+6x,
    当y=0时,﹣x2+6x=0,解得x1=0,x2=6,则A(6,0),
    抛物线的对称轴为直线x=3,
    ∵P(1,3),
    ∴B(1,5),
    ∵点B关于抛物线对称轴的对称点为C
    ∴C(5,5),
    ∴BC=5﹣1=4;
    (II)当y=0时,﹣x2+2mx=0,解得x1=0,x2=2m,则A(2m,0),
    B(1,2m﹣1),
    ∵点B关于抛物线对称轴的对称点为C,而抛物线的对称轴为直线x=m,
    ∴C(2m﹣1,2m﹣1),
    ∵PC⊥PA,
    ∴PC2+AC2=PA2,
    ∴(2m﹣2)2+(m﹣1)2+12+(2m﹣1)2=(2m﹣1)2+m2,
    整理得2m2﹣5m+3=0,解得m1=1,m2=,
    即m的值为;
    (III)如图,
    ∵PE⊥PC,PE=PC,
    ∴△PME≌△CBP,
    ∴PM=BC=2m﹣2,ME=BP=2m﹣1﹣m=m﹣1,
    而P(1,m)
    ∴2m﹣2=m,解得m=2,
    ∴ME=m﹣1=1,
    ∴E(2,0);
    作PH⊥y轴于H,如图,
    易得△PHE′≌△PBC,
    ∴PH=PB=m﹣1,HE′=BC=2m﹣2,
    而P(1,m)
    ∴m﹣1=1,解得m=2,
    ∴HE′=2m﹣2=2,
    ∴E′(0,4);
    综上所述,m的值为2,点E的坐标为(2,0)或(0,4).

    【点睛】
    本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会运用全等三角形的知识解决线段相等的问题;理解坐标与图形性质,记住两点间的距离公式.
    19、 (1)见解析;(2)3;(3)2;(4)1,EB、BF;FC、CG;GD、DH;HA
    【解析】
    利用菱形四条边相等,分别在四边上进行截取和连接,得出AE=EB+BF=FC+CG+GD+DH
    =HA,进一步求得S△AOE=S四边形EOFB=S四边形FOGC=S四边形GOHD=S△HOA.即可.
    【详解】
    (1)在AB边上取点E,使AE=4,连接OA,OE;
    (2)在BC边上取点F,使BF=3,连接OF;
    (3)在CD边上取点G,使CG=2,连接OG;
    (4)在DA边上取点H,使DH=1,连接OH.
    由于AE=EB+BF=FC+CG=GD+DH=HA.
    可证S△AOE=S四边形EOFB=S四边形FOGC=S四边形GOHD=S△HOA.
    故答案为:3,2,1;EB、BF;FC、CG;GD、DH;HA.
    【点睛】
    此题考查菱形的性质,熟练掌握菱形的四条边相等,对角线互相垂直是解题的关键.
    20、a2+2a,2
    【解析】
    根据分式的减法和除法可以化简题目中的式子,然后根据a2+2a−2=2,即可解答本题.
    【详解】
    解:


    =a(a+2)
    =a2+2a,
    ∵a2+2a﹣2=2,
    ∴a2+2a=2,
    ∴原式=2.
    【点睛】
    本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.
    21、 (1)k=-,b=1;(1) (0,1)和
    【解析】
    分析:(1) 由直线经过点,可得.由抛物线的对称轴是直线,可得,进而得到A、B、D的坐标,然后分两种情况讨论即可;
    (3)设E(a,),E关于直线AB的对称点E′为(0,b),EE′与AB的交点为P.则EE′⊥AB,P为EE′的中点,列方程组,求解即可得到a的值,进而得到答案.
    详解:(1) 由直线经过点,可得.
    由抛物线的对称轴是直线,可得.
    ∵直线与x轴、y轴分别相交于点、,
    ∴点的坐标是,点的坐标是.
    ∵抛物线的顶点是点,∴点的坐标是.
    ∵点是轴上一点,∴设点的坐标是.
    ∵△BCG与△BCD相似,又由题意知,,
    ∴△BCG与△相似有两种可能情况:
    ①如果,那么,解得,∴点的坐标是.
    ②如果,那么,解得,∴点的坐标是.
    综上所述:符合要求的点有两个,其坐标分别是和 .
    (3)设E(a,),E关于直线AB的对称点E′为(0,b),EE′与AB的交点为P,则EE′⊥AB,P为EE′的中点,∴ ,整理得:,∴(a-1)(a+1)=0,解得:a=-1或a=1.
    当a=-1时,=;
    当a=1时,=;
    ∴点的坐标是或.

    点睛:本题是二次函数的综合题.考查了二次函数的性质、解析式的求法以及相似三角形的性质.解答(1)问的关键是要分类讨论,解答(3)的关键是利用两直线垂直则k的乘积为-1和P是EE′的中点.
    22、(1)(2)1(3)①②③
    【解析】
    (1)由抛物线与x轴只有一个交点,可知△=0;
    (2)由抛物线与x轴有两个交点且AB=2,可知A、B坐标,代入解析式,可得k值;
    (3)通过解析式求出对称轴,与y轴交点,并根据系数的关系得出判断.
    【详解】
    (1)∵二次函数y=kx2﹣4kx+3与x轴只有一个公共点,
    ∴关于x的方程kx2﹣4kx+3=0有两个相等的实数根,
    ∴△=(﹣4k)2﹣4×3k=16k2﹣12k=0,
    解得:k1=0,k2=,
    k≠0,
    ∴k=;
    (2)∵AB=2,抛物线对称轴为x=2,
    ∴A、B点坐标为(1,0),(3,0),
    将(1,0)代入解析式,可得k=1,
    (3)①∵当x=0时,y=3,
    ∴二次函数图象与y轴的交点为(0,3),①正确;
    ②∵抛物线的对称轴为x=2,
    ∴抛物线的对称轴不变,②正确;
    ③二次函数y=kx2﹣4kx+3=k(x2﹣4x)+3,将其看成y关于k的一次函数,
    令k的系数为0,即x2﹣4x=0,
    解得:x1=0,x2=4,
    ∴抛物线一定经过两个定点(0,3)和(4,3),③正确.
    综上可知:正确的结论有①②③.
    【点睛】
    本题考查了二次函数的性质,与x、y轴的交点问题,对称轴问题,以及系数与图象的关系问题,是一道很好的综合问题.
    23、(1)证明见解析;(2);(3);
    【解析】
    (1)连接OA、AD,如图,利用圆周角定理得到∠B=∠ADC,则可证明∠ADC=2
    ∠ACP,利用CD为直径得到∠DAC=90°,从而得到∠ADC=60°,∠C=30°,则∠AOP=60°,
    于是可证明∠OAP=90°,然后根据切线的判断定理得到结论;
    (2)利用∠P=30°得到OP=2OA,则,从而得到⊙O的直径;
    (3)作EH⊥AD于H,如图,由点B等分半圆CD得到∠BAC=45°,则∠DAE=45°,设
    DH=x,则DE=2x,所以 然后求出x即可
    得到DE的长.
    【详解】
    (1)证明:连接OA、AD,如图,
    ∵∠B=2∠P,∠B=∠ADC,
    ∴∠ADC=2∠P,
    ∵AP=AC,
    ∴∠P=∠ACP,
    ∴∠ADC=2∠ACP,
    ∵CD为直径,
    ∴∠DAC=90°,
    ∴∠ADC=60°,∠C=30°,
    ∴△ADO为等边三角形,
    ∴∠AOP=60°,
    而∠P=∠ACP=30°,
    ∴∠OAP=90°,
    ∴OA⊥PA,
    ∴PA是⊙O的切线;
    (2)解:在Rt△OAP中,∵∠P=30°,
    ∴OP=2OA,

    ∴⊙O的直径为;
    (3)解:作EH⊥AD于H,如图,
    ∵点B等分半圆CD,
    ∴∠BAC=45°,
    ∴∠DAE=45°,
    设DH=x,
    在Rt△DHE中,DE=2x,
    在Rt△AHE中,


    解得


    【点睛】
    本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线.圆的切线垂直于经过切点的半径.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;有切线时,常常“遇到切点连圆心得半径”.也考查了圆周角定理.
    24、(1)应购进A型台灯75盏,B型台灯25盏;(2)P=﹣5m+2000;(3)商场购进A型台灯20盏,B型台灯80盏,销售完这批台灯时获利最多,此时利润为1900元.
    【解析】
    (1)设商场应购进A型台灯x盏,表示出B型台灯为(100-x)盏,然后根据进货款=A型台灯的进货款+B型台灯的进货款列出方程求解即可;
    (2)根据题意列出方程即可;
    (3)设商场销售完这批台灯可获利y元,根据获利等于两种台灯的获利总和列式整理,再求出x的取值范围,然后根据一次函数的增减性求出获利的最大值.
    【详解】
    解:(1)设商场应购进A型台灯x盏,则B型台灯为(100﹣x)盏,
    根据题意得,30x+50(100﹣x)=3500,
    解得x=75,
    所以,100﹣75=25,
    答:应购进A型台灯75盏,B型台灯25盏;
    (2)设商场销售完这批台灯可获利P元,
    则P=(45﹣30)m+(70﹣50)(100﹣m),
    =15m+2000﹣20m,
    =﹣5m+2000,
    即P=﹣5m+2000,
    (3)∵B型台灯的进货数量不超过A型台灯数量的4倍,
    ∴100﹣m≤4m,
    ∴m≥20,
    ∵k=﹣5<0,P随m的增大而减小,
    ∴m=20时,P取得最大值,为﹣5×20+2000=1900(元)
    答:商场购进A型台灯20盏,B型台灯80盏,销售完这批台灯时获利最多,此时利润为1900元.
    【点睛】
    本题考查了一次函数与一元一次方程的应用,解题的关键是熟练的掌握一次函数与一元一次方程的应用.

    相关试卷

    广东省广州市广州外国语校2021-2022学年中考数学考试模拟冲刺卷含解析:

    这是一份广东省广州市广州外国语校2021-2022学年中考数学考试模拟冲刺卷含解析,共21页。试卷主要包含了答题时请按要求用笔,下列计算正确的是等内容,欢迎下载使用。

    2021-2022学年上海市外国语大附属外国语校中考数学考试模拟冲刺卷含解析:

    这是一份2021-2022学年上海市外国语大附属外国语校中考数学考试模拟冲刺卷含解析,共27页。试卷主要包含了的相反数是,下列运算正确的是,下列计算正确的是,某校40名学生参加科普知识竞赛等内容,欢迎下载使用。

    2021-2022学年江苏省常州市七校中考数学考试模拟冲刺卷含解析:

    这是一份2021-2022学年江苏省常州市七校中考数学考试模拟冲刺卷含解析,共17页。试卷主要包含了下列计算正确的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map