所属成套资源:人教版八年级数学上册 《专项训练+能力提升》精练
初中数学人教版八年级上册13.4课题学习 最短路径问题当堂检测题
展开
这是一份初中数学人教版八年级上册13.4课题学习 最短路径问题当堂检测题,共12页。
专题13.4 最短路径问题(专项训练)1.如图,直线L是一条输水主管道,现有A、B两户新住户要接水入户,图中实线表示铺设的管道,则铺设的管道最短的是( )A. B. C. D.、2.如图,在△ABC中,AB=3,AC=4,EF垂直平分BC,点P为直线EF上的任一点,则AP+BP的最小值是( )A.4 B.5 C.6 D.73.如图,AD是等边△ABC的BC边上的中线,F是AD边上的动点,E是AC边上动点,当EF+CF取得最小值时,则∠ECF的度数为( )A.15° B.22.5° C.30° D.45°4.如图,在△ABC中,AB=AC,BC=4,面积是14,AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为( )A.10 B.9 C.8 D.64.如图,在等边△ABC中,点E是AC边的中点,点P是△ABC的中线AD上的动点,且AD=6,则EP+CP的最小值是( )A.12 B.9 C.6 D.35.如图,在等边△ABC中,AD⊥BC,垂足为点D,AD=4,P是AD上一动点,E为AB的中点,连接PE,PB,则PB+PE的最小值为 .6.如图,已知∠MON=40°,P为∠MON内一定点,OM上有一点A,ON上有一点B,当△PAB的周长取最小值时,∠APB的度数是 °.7.如图,∠AOB=30°,点P是∠AOB内的一定点,且OP=6,若点M,N分别是射线OA,OB上异于点O的动点,则△PMN周长的最小值是 . 8.如图,AB⊥BC,AD⊥DC,∠BAD=116°,在BC、CD上分别找一点M、N,当△AMN周长最小时,∠AMN+∠ANM的度数是 .9.如图,在等边三角形ABC中,点E是AC边的中点,点P是△ABC的中线AD上的动点,且AD=6,则EP+CP的最小值是 .10.如图,直线m是△ABC中BC边的垂直平分线,点P是直线m上的一动点.若AB=6,AC=4,BC=7,则△APC周长的最小值是 .11.如图,在平面直角坐标系中,点A(4,4),B(2,﹣4).(1)若点A关于x轴、y轴的对称点分别是点C、D,请分别描出并写出点C、D的坐标;(2)在y轴上求作一点P,使PA+PB最小(不写作法,保留作图痕迹)
专题13.4 最短路径问题(专项训练)答案1.如图,直线L是一条输水主管道,现有A、B两户新住户要接水入户,图中实线表示铺设的管道,则铺设的管道最短的是( )A. B. C. D.【答案】C【解答】解:作点B关于直线l的对称点B',连接AB′交直线l于M.根据两点之间,线段最短,可知选项C修建的管道,则所需管道最短.故选:C.2.如图,在△ABC中,AB=3,AC=4,EF垂直平分BC,点P为直线EF上的任一点,则AP+BP的最小值是( )A.4 B.5 C.6 D.7【答案】A【解答】解:连接PC.∵EF是BC的垂直平分线,∴BP=PC.∴PA+BP=AP+PC.∴当点A,P,C在一条直线上时,PA+BP有最小值,最小值=AC=4.故选:A.3.如图,AD是等边△ABC的BC边上的中线,F是AD边上的动点,E是AC边上动点,当EF+CF取得最小值时,则∠ECF的度数为( )A.15° B.22.5° C.30° D.45°【答案】C【解答】解:如图:过点B作BE⊥AC于点E,交AD于点F,连接CF,∵△ABC是等边三角形,∴AE=EC,AF=FC,∴∠FAC=∠FCA,∵AD是等边△ABC的BC边上的中线,∴∠BAD=∠CAD=30°,∴∠ECF=30°.故选:C.4.如图,在△ABC中,AB=AC,BC=4,面积是14,AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为( )A.10 B.9 C.8 D.6【答案】B【解答】解:连接AD,AM,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=BC•AD=×4×AD=14,解得AD=7,∵EF是线段AC的垂直平分线,∴AM=CM,当点M在AD上时,DM+CM最小,最小值为AD,∴△CDM的周长最短=(CM+MD)+CD=AD+BC=7+×4=7+2=9.故选:B.4.如图,在等边△ABC中,点E是AC边的中点,点P是△ABC的中线AD上的动点,且AD=6,则EP+CP的最小值是( )A.12 B.9 C.6 D.3【答案】C【解答】解:作点E关于AD的对称点F,连接CF,∵△ABC是等边三角形,AD是BC边上的中线,∴AD⊥BC,∴AD是BC的垂直平分线,∴点E关于AD的对应点为点F,∴CF就是EP+CP的最小值.∵△ABC是等边三角形,E是AC边的中点,∴F是AB的中点,∴CF是△ABC的中线,∴CF=AD=6,即EP+CP的最小值为6,故选:C.5.如图,在等边△ABC中,AD⊥BC,垂足为点D,AD=4,P是AD上一动点,E为AB的中点,连接PE,PB,则PB+PE的最小值为 .【答案】4【解答】解:连接EC交AD于点P,∵△BAC是等边三角形,∴BP=CP,∴PB+PE=PC+PE≥EC,当E、P、C三点共线时,PB+PE的值最小,∵E是AB的中点,AD⊥BC,∴AD=EC,∵AD=4,∴EC=4,∴PB+PE的最值为4,故答案为:4.6.如图,已知∠MON=40°,P为∠MON内一定点,OM上有一点A,ON上有一点B,当△PAB的周长取最小值时,∠APB的度数是 °.【答案】100【解答】解:分别作点P关于OM、ON的对称点P′、P″,连接OP′、OP″、P′P″,P′P″交OM、ON于点A、B,连接PA、PB,此时△PAB周长的最小值等于P′P″.由轴对称性质可得,OP′=OP″=OP,∠P′OA=∠POA,∠P″OB=∠POB,∴∠P′OP″=2∠MON=2×40°=80°,∴∠OP′P″=∠OP″P′=(180°﹣80°)÷2=50°,又∵∠BPO=∠OP″B=50°,∠APO=∠AP′O=50°,∴∠APB=∠APO+∠BPO=100°.故答案为:100.7.如图,∠AOB=30°,点P是∠AOB内的一定点,且OP=6,若点M,N分别是射线OA,OB上异于点O的动点,则△PMN周长的最小值是 .【答案】6【解答】解作点P关于OB的对称点P',作点P关于OA的对称点P'',连接P'P'',则P'P''的长就是△PMN周长的最小值;在△OP'P''中,OP'=OP'',∠AOB=30°,∴∠P'OP''=60°,∵OP=6,∴P'P''=6;故答案为6;8.如图,AB⊥BC,AD⊥DC,∠BAD=116°,在BC、CD上分别找一点M、N,当△AMN周长最小时,∠AMN+∠ANM的度数是 .【答案】128°【解答】解:作A点关于BC的对称点E,作A点关于CD的对称点F,连接EF,交BC于M点,交CD于N点,∴AM=EM,AN=NF,∴AM+AN+MN=EM+MN+NF=EF,此时△AMN周长最小,由对称性可知,∠E=∠EAM,∠F=∠NAF,∵∠BAD=116°,∴∠E+∠F=180°﹣116°=64°,∴∠MAN=116°﹣64°=52°,∴∠AMN+∠ANM=180°﹣52°=128°,故答案为:128°.9.如图,在等边三角形ABC中,点E是AC边的中点,点P是△ABC的中线AD上的动点,且AD=6,则EP+CP的最小值是 .【答案】6【解答】解:作点E关于AD的对称点F,连接CF,∵△ABC是等边三角形,AD是BC边上的中线,∴AD⊥BC,∴AD是BC的垂直平分线,∴点E关于AD的对应点为点F,∴CF就是EP+CP的最小值.∵△ABC是等边三角形,E是AC边的中点,∴F是AB的中点,∴CF是△ABC的中线,∴CF=AD=6,即EP+CP的最小值为6,故答案为6.10.如图,直线m是△ABC中BC边的垂直平分线,点P是直线m上的一动点.若AB=6,AC=4,BC=7,则△APC周长的最小值是 .【答案】10【解答】解:∵直线m垂直平分AB,∴B、C关于直线m对称,设直线m交AB于D,∴当P和D重合时,AP+CP的值最小,最小值等于AB的长,∴△APC周长的最小值是6+4=10.故答案为10.11.如图,在平面直角坐标系中,点A(4,4),B(2,﹣4).(1)若点A关于x轴、y轴的对称点分别是点C、D,请分别描出并写出点C、D的坐标;(2)在y轴上求作一点P,使PA+PB最小(不写作法,保留作图痕迹)【解答】解:(1)如图所示;C点坐标为;(4,﹣4),D点坐标为:(﹣4,4); (2)连接BD交y轴于点P,P点即为所求;
相关试卷
这是一份人教版八年级上册13.4课题学习 最短路径问题同步训练题,共4页。试卷主要包含了4课题学习 最短路径问题, B, 垂直平分线,角的平分线等内容,欢迎下载使用。
这是一份初中数学人教版八年级上册13.4课题学习 最短路径问题精练,共15页。
这是一份人教版八年级上册13.4课题学习 最短路径问题综合训练题,共5页。