![第一课时 余弦定理第1页](http://img-preview.51jiaoxi.com/3/3/13546102/4/0.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第一课时 余弦定理第2页](http://img-preview.51jiaoxi.com/3/3/13546102/4/1.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第一课时 余弦定理第3页](http://img-preview.51jiaoxi.com/3/3/13546102/4/2.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第一课时 余弦定理第4页](http://img-preview.51jiaoxi.com/3/3/13546102/4/3.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第一课时 余弦定理第5页](http://img-preview.51jiaoxi.com/3/3/13546102/4/4.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第一课时 余弦定理第6页](http://img-preview.51jiaoxi.com/3/3/13546102/4/5.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第一课时 余弦定理第7页](http://img-preview.51jiaoxi.com/3/3/13546102/4/6.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第一课时 余弦定理第8页](http://img-preview.51jiaoxi.com/3/3/13546102/4/7.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第二课时 正弦定理第1页](http://img-preview.51jiaoxi.com/3/3/13546102/6/0.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第二课时 正弦定理第2页](http://img-preview.51jiaoxi.com/3/3/13546102/6/1.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第二课时 正弦定理第3页](http://img-preview.51jiaoxi.com/3/3/13546102/6/2.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第二课时 正弦定理第4页](http://img-preview.51jiaoxi.com/3/3/13546102/6/3.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第二课时 正弦定理第5页](http://img-preview.51jiaoxi.com/3/3/13546102/6/4.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第二课时 正弦定理第6页](http://img-preview.51jiaoxi.com/3/3/13546102/6/5.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第二课时 正弦定理第7页](http://img-preview.51jiaoxi.com/3/3/13546102/6/6.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第二课时 正弦定理第8页](http://img-preview.51jiaoxi.com/3/3/13546102/6/7.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第三课时 三角形中的几何计算第1页](http://img-preview.51jiaoxi.com/3/3/13546102/5/0.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第三课时 三角形中的几何计算第2页](http://img-preview.51jiaoxi.com/3/3/13546102/5/1.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第三课时 三角形中的几何计算第3页](http://img-preview.51jiaoxi.com/3/3/13546102/5/2.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第三课时 三角形中的几何计算第4页](http://img-preview.51jiaoxi.com/3/3/13546102/5/3.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第三课时 三角形中的几何计算第5页](http://img-preview.51jiaoxi.com/3/3/13546102/5/4.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第三课时 三角形中的几何计算第6页](http://img-preview.51jiaoxi.com/3/3/13546102/5/5.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第三课时 三角形中的几何计算第7页](http://img-preview.51jiaoxi.com/3/3/13546102/5/6.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第三课时 三角形中的几何计算第8页](http://img-preview.51jiaoxi.com/3/3/13546102/5/7.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第四课时 余弦定理、正弦定理应用举例第1页](http://img-preview.51jiaoxi.com/3/3/13546102/7/0.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第四课时 余弦定理、正弦定理应用举例第2页](http://img-preview.51jiaoxi.com/3/3/13546102/7/1.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第四课时 余弦定理、正弦定理应用举例第3页](http://img-preview.51jiaoxi.com/3/3/13546102/7/2.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第四课时 余弦定理、正弦定理应用举例第4页](http://img-preview.51jiaoxi.com/3/3/13546102/7/3.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第四课时 余弦定理、正弦定理应用举例第5页](http://img-preview.51jiaoxi.com/3/3/13546102/7/4.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第四课时 余弦定理、正弦定理应用举例第6页](http://img-preview.51jiaoxi.com/3/3/13546102/7/5.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第四课时 余弦定理、正弦定理应用举例第7页](http://img-preview.51jiaoxi.com/3/3/13546102/7/6.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![第四课时 余弦定理、正弦定理应用举例第8页](http://img-preview.51jiaoxi.com/3/3/13546102/7/7.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![6.2.4 向量的数量积第1页](http://img-preview.51jiaoxi.com/3/3/13546102/11/0.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![6.2.4 向量的数量积第2页](http://img-preview.51jiaoxi.com/3/3/13546102/11/1.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![6.2.4 向量的数量积第3页](http://img-preview.51jiaoxi.com/3/3/13546102/11/2.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![6.2.4 向量的数量积第4页](http://img-preview.51jiaoxi.com/3/3/13546102/11/3.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![6.2.4 向量的数量积第5页](http://img-preview.51jiaoxi.com/3/3/13546102/11/4.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![6.2.4 向量的数量积第6页](http://img-preview.51jiaoxi.com/3/3/13546102/11/5.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![6.2.4 向量的数量积第7页](http://img-preview.51jiaoxi.com/3/3/13546102/11/6.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![6.2.4 向量的数量积第8页](http://img-preview.51jiaoxi.com/3/3/13546102/11/7.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![6.1 平面向量的概念第1页](http://img-preview.51jiaoxi.com/3/3/13546102/8/0.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![6.1 平面向量的概念第2页](http://img-preview.51jiaoxi.com/3/3/13546102/8/1.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![6.1 平面向量的概念第3页](http://img-preview.51jiaoxi.com/3/3/13546102/8/2.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![6.1 平面向量的概念第4页](http://img-preview.51jiaoxi.com/3/3/13546102/8/3.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![6.1 平面向量的概念第5页](http://img-preview.51jiaoxi.com/3/3/13546102/8/4.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![6.1 平面向量的概念第6页](http://img-preview.51jiaoxi.com/3/3/13546102/8/5.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![6.1 平面向量的概念第7页](http://img-preview.51jiaoxi.com/3/3/13546102/8/6.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![6.1 平面向量的概念第8页](http://img-preview.51jiaoxi.com/3/3/13546102/8/7.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![6.3.2—6.3.4第1页](http://img-preview.51jiaoxi.com/3/3/13546102/1/0.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![6.3.2—6.3.4第2页](http://img-preview.51jiaoxi.com/3/3/13546102/1/1.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![6.3.2—6.3.4第3页](http://img-preview.51jiaoxi.com/3/3/13546102/1/2.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![6.3.2—6.3.4第4页](http://img-preview.51jiaoxi.com/3/3/13546102/1/3.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![6.3.2—6.3.4第5页](http://img-preview.51jiaoxi.com/3/3/13546102/1/4.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![6.3.2—6.3.4第6页](http://img-preview.51jiaoxi.com/3/3/13546102/1/5.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![6.3.2—6.3.4第7页](http://img-preview.51jiaoxi.com/3/3/13546102/1/6.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![6.3.2—6.3.4第8页](http://img-preview.51jiaoxi.com/3/3/13546102/1/7.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![6.3.5 平面向量数量积的坐标表示第1页](http://img-preview.51jiaoxi.com/3/3/13546102/0/0.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![6.3.5 平面向量数量积的坐标表示第2页](http://img-preview.51jiaoxi.com/3/3/13546102/0/1.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![6.3.5 平面向量数量积的坐标表示第3页](http://img-preview.51jiaoxi.com/3/3/13546102/0/2.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![6.3.5 平面向量数量积的坐标表示第4页](http://img-preview.51jiaoxi.com/3/3/13546102/0/3.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![6.3.5 平面向量数量积的坐标表示第5页](http://img-preview.51jiaoxi.com/3/3/13546102/0/4.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![6.3.5 平面向量数量积的坐标表示第6页](http://img-preview.51jiaoxi.com/3/3/13546102/0/5.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![6.3.5 平面向量数量积的坐标表示第7页](http://img-preview.51jiaoxi.com/3/3/13546102/0/6.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![6.3.5 平面向量数量积的坐标表示第8页](http://img-preview.51jiaoxi.com/3/3/13546102/0/7.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![6.2.1—6.2.2第1页](http://img-preview.51jiaoxi.com/3/3/13546102/9/0.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![6.2.1—6.2.2第2页](http://img-preview.51jiaoxi.com/3/3/13546102/9/1.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![6.2.1—6.2.2第3页](http://img-preview.51jiaoxi.com/3/3/13546102/9/2.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![6.2.1—6.2.2第4页](http://img-preview.51jiaoxi.com/3/3/13546102/9/3.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![6.2.1—6.2.2第5页](http://img-preview.51jiaoxi.com/3/3/13546102/9/4.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![6.2.1—6.2.2第6页](http://img-preview.51jiaoxi.com/3/3/13546102/9/5.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![6.2.1—6.2.2第7页](http://img-preview.51jiaoxi.com/3/3/13546102/9/6.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![6.2.1—6.2.2第8页](http://img-preview.51jiaoxi.com/3/3/13546102/9/7.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![6.2.3 向量的数乘运算第1页](http://img-preview.51jiaoxi.com/3/3/13546102/10/0.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![6.2.3 向量的数乘运算第2页](http://img-preview.51jiaoxi.com/3/3/13546102/10/1.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![6.2.3 向量的数乘运算第3页](http://img-preview.51jiaoxi.com/3/3/13546102/10/2.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![6.2.3 向量的数乘运算第4页](http://img-preview.51jiaoxi.com/3/3/13546102/10/3.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![6.2.3 向量的数乘运算第5页](http://img-preview.51jiaoxi.com/3/3/13546102/10/4.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![6.2.3 向量的数乘运算第6页](http://img-preview.51jiaoxi.com/3/3/13546102/10/5.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![6.2.3 向量的数乘运算第7页](http://img-preview.51jiaoxi.com/3/3/13546102/10/6.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![6.2.3 向量的数乘运算第8页](http://img-preview.51jiaoxi.com/3/3/13546102/10/7.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![6.3.1 平面向量基本定理第1页](http://img-preview.51jiaoxi.com/3/3/13546102/2/0.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![6.3.1 平面向量基本定理第2页](http://img-preview.51jiaoxi.com/3/3/13546102/2/1.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![6.3.1 平面向量基本定理第3页](http://img-preview.51jiaoxi.com/3/3/13546102/2/2.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![6.3.1 平面向量基本定理第4页](http://img-preview.51jiaoxi.com/3/3/13546102/2/3.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![6.3.1 平面向量基本定理第5页](http://img-preview.51jiaoxi.com/3/3/13546102/2/4.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![6.3.1 平面向量基本定理第6页](http://img-preview.51jiaoxi.com/3/3/13546102/2/5.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![6.3.1 平面向量基本定理第7页](http://img-preview.51jiaoxi.com/3/3/13546102/2/6.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![6.3.1 平面向量基本定理第8页](http://img-preview.51jiaoxi.com/3/3/13546102/2/7.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![章末总结第1页](http://img-preview.51jiaoxi.com/3/3/13546102/12/0.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![章末总结第2页](http://img-preview.51jiaoxi.com/3/3/13546102/12/1.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![章末总结第3页](http://img-preview.51jiaoxi.com/3/3/13546102/12/2.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![章末总结第4页](http://img-preview.51jiaoxi.com/3/3/13546102/12/3.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![章末总结第5页](http://img-preview.51jiaoxi.com/3/3/13546102/12/4.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![章末总结第6页](http://img-preview.51jiaoxi.com/3/3/13546102/12/5.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![章末总结第7页](http://img-preview.51jiaoxi.com/3/3/13546102/12/6.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![章末总结第8页](http://img-preview.51jiaoxi.com/3/3/13546102/12/7.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![6.4.1—6.4.2第1页](http://img-preview.51jiaoxi.com/3/3/13546102/3/0.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![6.4.1—6.4.2第2页](http://img-preview.51jiaoxi.com/3/3/13546102/3/1.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![6.4.1—6.4.2第3页](http://img-preview.51jiaoxi.com/3/3/13546102/3/2.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![6.4.1—6.4.2第4页](http://img-preview.51jiaoxi.com/3/3/13546102/3/3.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![6.4.1—6.4.2第5页](http://img-preview.51jiaoxi.com/3/3/13546102/3/4.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![6.4.1—6.4.2第6页](http://img-preview.51jiaoxi.com/3/3/13546102/3/5.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![6.4.1—6.4.2第7页](http://img-preview.51jiaoxi.com/3/3/13546102/3/6.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![6.4.1—6.4.2第8页](http://img-preview.51jiaoxi.com/3/3/13546102/3/7.jpg?x-oss-process=image/resize,w_794/sharpen,100)
所属成套资源:新人教a版数学必修第二册PPT课件全套
人教版高中数学必修第二册第六章平面向量及其应用课时PPT课件
展开
这是一份人教版高中数学必修第二册第六章平面向量及其应用课时PPT课件,文件包含624向量的数量积pptx、61平面向量的概念pptx、632634pptx、635平面向量数量积的坐标表示pptx、621622pptx、623向量的数乘运算pptx、631平面向量基本定理pptx、第三课时三角形中的几何计算pptx、章末总结pptx、第一课时余弦定理pptx、第二课时正弦定理pptx、第四课时余弦定理正弦定理应用举例pptx、641642pptx等13份课件配套教学资源,其中PPT共475页, 欢迎下载使用。
6.3.5 平面向量数量积的坐标表示[目标导航]新知探究·素养启迪课堂探究·素养培育新知探究·素养启迪1.平面向量的数量积与两向量垂直的坐标表示设向量a=(x1,y1),b=(x2,y2),(1)数量积:两个向量的数量积等于它们对应坐标的乘积的和,即a·b= .(2)向量垂直:a⊥b⇔ .x1x2+y1y2x1x2+y1y2=02.平面向量的模与夹角的坐标表示小试身手1.已知a=(0,1),b=(2,-1),则a·b等于( )(A)1 (B)-1 (C)2 (D)-2解析:因为a=(0,1),b=(2,-1),所以a·b=0×2+1×(-1)=-1.故选B.BD 3.(2021·全国甲卷)已知向量a=(3,1),b=(1,0),c=a+kb,若a⊥c,则 . 答案:(1,2)或(-1,-2)课堂探究·素养培育探究点一数量积的坐标运算解析:(1)a+2b=(4,-3),a-3b=(-1,2),所以(a+2b)·(a-3b)=4×(-1)+(-3)×2=-10.故选B.答案:(1)B (2)已知a=(2,-1),a+2b=(6,3),若b·c=14,|c|=5,则向量c的坐标为 . 答案:(2)(3,4)或(4,3)答案:(3)5方法技巧(1)进行数量积运算时,要正确使用公式a·b=x1x2+y1y2,并能灵活运用以下几个关系:①|a|2=a2;②(a+b)·(a-b)=|a|2-|b|2;③(a+b)2=|a|2+2a·b+|b|2.(2)利用数量积的条件求平面向量的坐标,一般来说应当先设出向量的坐标,然后根据题目中已知的条件找出向量坐标满足的等量关系,利用数量积的坐标运算列出方程(组)进行求解.(3)向量数量积的运算有两种思路:一种是向量式,另一种是坐标式,两者相互补充.如本例中的(3).即时训练1-1:(1)向量a=(1,-1),b=(-1,2),则(2a+b)·a等于( )(A)-1 (B)0 (C)1 (D)2解析:(1)因为a=(1,-1),b=(-1,2),所以2a+b=(1,0),(2a+b)·a=1.故选C.答案:(1)C 答案:(2)A(3)已知a=(2,-1),b=(3,2),若存在向量c,满足a·c=2,b·c=5,则向量c等于 . [备用例1] 已知向量a=(-1,2),b=(3,2).(1)求a·(a-b);解:(1)法一 因为a=(-1,2),b=(3,2),所以a-b=(-4,0).所以a·(a-b)=(-1,2)·(-4,0)=(-1)×(-4)+2×0=4.法二 a·(a-b)=a2-a·b=(-1)2+22-[(-1)×3+2×2]=4.解:(2)因为a+b=(-1,2)+(3,2)=(2,4),2a-b=2(-1,2)-(3,2)=(-2,4)-(3,2)=(-5,2),所以(a+b)·(2a-b)=(2,4)·(-5,2)=2×(-5)+4×2=-2.[备用例1] 已知向量a=(-1,2),b=(3,2).(2)求(a+b)·(2a-b);解:(3)(a·b)c=[(-1,2)·(3,2)](2,1)=(-1×3+2×2)(2,1)=(2,1).a(b·c)=(-1,2)[(3,2)·(2,1)]=(-1,2)(3×2+2×1)=8(-1,2)=(-8,16).[备用例1] 已知向量a=(-1,2),b=(3,2).(3)若c=(2,1),求(a·b)c,a(b·c).平面向量的模探究点二 答案:(1)B①②方法技巧求向量的模的两种基本策略(1)字母表示下的运算:利用|a|2=a2,将向量的模的运算转化为向量与向量的数量积的问题.答案:(1)C(2)设向量a=(x,x+1),b=(1,2),且|a+b|2=|a|2+|b|2,则x= . [备用例2] 已知向量a=(1,2),b=(-3,4),c=a+λb(λ∈R),则|c|取最小值时,λ的值为 . 平面向量的夹角和垂直问题探究点三 答案:(1)D 答案:(2)C(3)已知向量a=(-2,-1),b=(t,1),且a与b的夹角为钝角,则实数t的取值范围是 . 变式训练3-1:若将本例(3)的“钝角”改为“锐角”呢?方法技巧即时训练3-1:(1)设向量a=(3,3),b=(1,-1).若(a+λb)⊥(a-λb),则实数λ= . 解析:(1)(a+λb)⊥(a-λb)⇒(a+λb)·(a-λb)=a2-λ2b2=0⇒18-2λ2=0⇒λ=±3.答案:(1)±3[备用例3] 已知a=(1,2),b=(1,λ),分别确定实数λ的取值范围,使得(1)a与b的夹角为直角; [备用例3] 已知a=(1,2),b=(1,λ),分别确定实数λ的取值范围,使得(2)a与b的夹角为钝角;[备用例3] 已知a=(1,2),b=(1,λ),分别确定实数λ的取值范围,使得(3)a与b的夹角为锐角.课堂达标解析:a·b=-x+6=3,故x=3.故选A.A 2.已知A(1,2),B(2,3),C(-2,5),则△ABC的形状是( )(A)直角三角形 (B)锐角三角形(C)钝角三角形 (D)等边三角形A C 4.若a·b=39,b=(12,5),则a在b上的投影向量是 . 点击进入 课时作业·素养提升