![7.2.2 复数的乘、除运算第1页](http://img-preview.51jiaoxi.com/3/3/13546103/0/0.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![7.2.2 复数的乘、除运算第2页](http://img-preview.51jiaoxi.com/3/3/13546103/0/1.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![7.2.2 复数的乘、除运算第3页](http://img-preview.51jiaoxi.com/3/3/13546103/0/2.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![7.2.2 复数的乘、除运算第4页](http://img-preview.51jiaoxi.com/3/3/13546103/0/3.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![7.2.2 复数的乘、除运算第5页](http://img-preview.51jiaoxi.com/3/3/13546103/0/4.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![7.2.2 复数的乘、除运算第6页](http://img-preview.51jiaoxi.com/3/3/13546103/0/5.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![7.2.2 复数的乘、除运算第7页](http://img-preview.51jiaoxi.com/3/3/13546103/0/6.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![7.2.2 复数的乘、除运算第8页](http://img-preview.51jiaoxi.com/3/3/13546103/0/7.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![7.3.1—7.3.2第1页](http://img-preview.51jiaoxi.com/3/3/13546103/4/0.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![7.3.1—7.3.2第2页](http://img-preview.51jiaoxi.com/3/3/13546103/4/1.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![7.3.1—7.3.2第3页](http://img-preview.51jiaoxi.com/3/3/13546103/4/2.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![7.3.1—7.3.2第4页](http://img-preview.51jiaoxi.com/3/3/13546103/4/3.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![7.3.1—7.3.2第5页](http://img-preview.51jiaoxi.com/3/3/13546103/4/4.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![7.3.1—7.3.2第6页](http://img-preview.51jiaoxi.com/3/3/13546103/4/5.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![7.3.1—7.3.2第7页](http://img-preview.51jiaoxi.com/3/3/13546103/4/6.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![7.3.1—7.3.2第8页](http://img-preview.51jiaoxi.com/3/3/13546103/4/7.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![7.1.2 复数的几何意义第1页](http://img-preview.51jiaoxi.com/3/3/13546103/3/0.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![7.1.2 复数的几何意义第2页](http://img-preview.51jiaoxi.com/3/3/13546103/3/1.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![7.1.2 复数的几何意义第3页](http://img-preview.51jiaoxi.com/3/3/13546103/3/2.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![7.1.2 复数的几何意义第4页](http://img-preview.51jiaoxi.com/3/3/13546103/3/3.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![7.1.2 复数的几何意义第5页](http://img-preview.51jiaoxi.com/3/3/13546103/3/4.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![7.1.2 复数的几何意义第6页](http://img-preview.51jiaoxi.com/3/3/13546103/3/5.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![7.1.2 复数的几何意义第7页](http://img-preview.51jiaoxi.com/3/3/13546103/3/6.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![7.1.2 复数的几何意义第8页](http://img-preview.51jiaoxi.com/3/3/13546103/3/7.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![7.2.1 复数的加、减运算及其几何意义第1页](http://img-preview.51jiaoxi.com/3/3/13546103/1/0.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![7.2.1 复数的加、减运算及其几何意义第2页](http://img-preview.51jiaoxi.com/3/3/13546103/1/1.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![7.2.1 复数的加、减运算及其几何意义第3页](http://img-preview.51jiaoxi.com/3/3/13546103/1/2.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![7.2.1 复数的加、减运算及其几何意义第4页](http://img-preview.51jiaoxi.com/3/3/13546103/1/3.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![7.2.1 复数的加、减运算及其几何意义第5页](http://img-preview.51jiaoxi.com/3/3/13546103/1/4.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![7.2.1 复数的加、减运算及其几何意义第6页](http://img-preview.51jiaoxi.com/3/3/13546103/1/5.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![7.2.1 复数的加、减运算及其几何意义第7页](http://img-preview.51jiaoxi.com/3/3/13546103/1/6.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![7.2.1 复数的加、减运算及其几何意义第8页](http://img-preview.51jiaoxi.com/3/3/13546103/1/7.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![7.1.1 数系的扩充和复数的概念第1页](http://img-preview.51jiaoxi.com/3/3/13546103/2/0.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![7.1.1 数系的扩充和复数的概念第2页](http://img-preview.51jiaoxi.com/3/3/13546103/2/1.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![7.1.1 数系的扩充和复数的概念第3页](http://img-preview.51jiaoxi.com/3/3/13546103/2/2.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![7.1.1 数系的扩充和复数的概念第4页](http://img-preview.51jiaoxi.com/3/3/13546103/2/3.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![7.1.1 数系的扩充和复数的概念第5页](http://img-preview.51jiaoxi.com/3/3/13546103/2/4.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![7.1.1 数系的扩充和复数的概念第6页](http://img-preview.51jiaoxi.com/3/3/13546103/2/5.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![7.1.1 数系的扩充和复数的概念第7页](http://img-preview.51jiaoxi.com/3/3/13546103/2/6.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![7.1.1 数系的扩充和复数的概念第8页](http://img-preview.51jiaoxi.com/3/3/13546103/2/7.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![章末总结第1页](http://img-preview.51jiaoxi.com/3/3/13546103/5/0.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![章末总结第2页](http://img-preview.51jiaoxi.com/3/3/13546103/5/1.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![章末总结第3页](http://img-preview.51jiaoxi.com/3/3/13546103/5/2.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![章末总结第4页](http://img-preview.51jiaoxi.com/3/3/13546103/5/3.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![章末总结第5页](http://img-preview.51jiaoxi.com/3/3/13546103/5/4.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![章末总结第6页](http://img-preview.51jiaoxi.com/3/3/13546103/5/5.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![章末总结第7页](http://img-preview.51jiaoxi.com/3/3/13546103/5/6.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![章末总结第8页](http://img-preview.51jiaoxi.com/3/3/13546103/5/7.jpg?x-oss-process=image/resize,w_794/sharpen,100)
所属成套资源:新人教a版数学必修第二册PPT课件全套
人教版高中数学必修第二册第七章复数课时PPT课件
展开
这是一份人教版高中数学必修第二册第七章复数课时PPT课件,文件包含722复数的乘除运算pptx、731732pptx、712复数的几何意义pptx、721复数的加减运算及其几何意义pptx、711数系的扩充和复数的概念pptx、章末总结pptx等6份课件配套教学资源,其中PPT共205页, 欢迎下载使用。
7.2.2 复数的乘、除运算[目标导航]新知探究·素养启迪课堂探究·素养培育新知探究·素养启迪1.复数的乘法法则设z1=a+bi,z2=c+di(a,b,c,d∈R),则z1z2=(a+bi)·(c+di)= .(ac-bd)+(ad+bc)i2.复数的乘法的运算律对于任意z1,z2,z3∈C,有z2z1z1(z2z3)z1z2+z1z3|z|2小试身手A1.若复数z1=1+i,z2=3-i,则z1·z2等于( )(A)4+2i (B)2+i (C)2+2i (D)3+i解析:z1·z2=(1+i)(3-i)=4+2i.故选A.BD4.在复数范围内方程3x2+4=0的根为 . 课堂探究·素养培育探究点一复数的乘、除运算探究角度1 复数的乘法运算[例1] 计算:(1)(1+i)(1-i)+(-1+i);解:(1)(1+i)(1-i)+(-1+i)=1-i2+(-1+i)=2-1+i=1+i.方法总结(1)复数乘法的一般方法首先按多项式的乘法展开,再将i2换成-1,然后再进行复数的加、减运算.(2)常用公式①(a+bi)2=a2+2abi-b2(a,b∈R);②(a+bi)(a-bi)=a2+b2(a,b∈R);③(1±i)2=±2i.即时训练1-1:(1)(2+i)2等于( )(A)5-4i (B)5+4i(C)3-4i (D)3+4i解析:(1)(2+i)2=4-1+4i=3+4i.故选D.解析:(2)因为(1+ai)(2+i)=2-a+(1+2a)i为纯虚数,所以2-a=0且1+2a≠0,解得a=2.故选A.[备用例1] 求5+12i的平方根.探究角度2 复数的除法运算方法总结(1)根据复数的除法法则,通过分子、分母都乘分母的共轭复数,使“分母实数化”,这个过程与“分母有理化”类似.答案:-2+i探究角度3 复数的积与商的模[例3] (1)若复数z满足z(1+i)=2i(i为虚数单位),则|z|等于( )答案:(1)C方法总结答案:(1)A答案:(2)1探究角度4 复数的商与复数有关概念的综合答案:-6变式训练4-1:若本例中的复数为实数,则a的值为 . 方法总结涉及含未知量的复数的商为纯虚数或实数问题,一种方法是利用复数的除法将复数的商化为z=a+bi(a,b∈R)的形式后利用复数的有关概念求解,另一种方法是设出纯虚数或实数将问题转化为复数相等求解.虚数单位i的幂的周期性及其应用探究点二 [例5] (1)复数z=i8+(-i)9可化简为( )(A)1-i (B)0 (C)1+i (D)2答案:(1)A 答案:(2)C(3)1+i+i2+i3+…+i2 022= . 解析:(3)因为in+in+1+in+2+in+3=0,n∈N*,所以1+i+i2+i3+…+i2 022=1+i+i2+(i3+i4+i5+i6)+(i7+i8+i9+i10)+…+(i2 019+i2 020+i2 021+i2 022)=1+i+i2=i.答案:(3)i方法技巧要熟记in的取值的周期性,即i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1(n∈N),解题时要注意根据式子的特点创造条件使之与in联系起来以便计算求值.实系数一元二次方程探究点三[例6] 在复数范围内解下列方程.(1)x2+5=0;[例6] 在复数范围内解下列方程.(2)x2+4x+6=0.方法总结在复数范围内,实系数一元二次方程ax2+bx+c=0(a≠0)的求解方法(1)利用求根公式求解.(2)利用复数相等的定义求解.(1)求复数z的模;(2)若复数z是方程2x2+mx+n=0的一个根,求实数m,n的值.[备用例4]已知x=-1+i是方程x2+ax+b=0(a,b∈R)的一个根.(1)求实数a,b的值;[备用例4]已知x=-1+i是方程x2+ax+b=0(a,b∈R)的一个根.(2)结合根与系数的关系,猜测方程的另一个根,并给予证明.解:(2)由(1)知方程为x2+2x+2=0.设另一个根为x2,由根与系数的关系,得-1+i+x2=-2,所以x2=-1-i.下面给予证明:把x2=-1-i代入方程x2+2x+2=0,则左边=(-1-i)2+2(-1-i)+2=0=右边,所以x2=-1-i是方程的另一个根.课堂达标B解析:i607=i4×151+3=i3=-i.故选B.1.i为虚数单位,i607等于( )(A)i (B)-i (C)1 (D)-1A3.若1+3i是方程x2+bx+c=0(b,c∈R)的一个根,则方程的另一个根为( )(A)3+i (B)1-3i (C)3-i (D)-1+3i解析:根据复数范围内,实系数一元二次方程的求根公式知,两个虚数根互为共轭虚数,所以另一个根为1-3i.故选B.B答案:-1+i点击进入 课时作业·素养提升
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)