|试卷下载
终身会员
搜索
    上传资料 赚现金
    精品解析:2022年江苏省连云港市中考数学真题(解析版)
    立即下载
    加入资料篮
    精品解析:2022年江苏省连云港市中考数学真题(解析版)01
    精品解析:2022年江苏省连云港市中考数学真题(解析版)02
    精品解析:2022年江苏省连云港市中考数学真题(解析版)03
    还剩24页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    精品解析:2022年江苏省连云港市中考数学真题(解析版)

    展开
    这是一份精品解析:2022年江苏省连云港市中考数学真题(解析版),共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    数学试题
    一、选择题(本大题共有8小题,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)
    1. 的倒数是( )
    A. B. C. D.
    【答案】C
    【解析】
    【分析】由互为倒数的两数之积为1,即可求解.
    【详解】解:∵,
    ∴的倒数是.
    故选C
    2. 下列图案中,是轴对称图形的是( )
    A. B. C. D.
    【答案】A
    【解析】
    【分析】根据轴对称图形的概念逐项分析判断即可,轴对称图形的概念:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.
    【详解】A.是轴对称图形,故该选项正确,符合题意;
    B.不是轴对称图形,故该选项不正确,不符合题意;
    C.不是轴对称图形,故该选项不正确,不符合题意;
    D.不是轴对称图形,故该选项不正确,不符合题意;
    故选A
    【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
    3. 2021年12月9日,“天宫课堂”正式开课,我国航天员在中国空间站首次进行太空授课,本次授课结束时,网络在线观看人数累计超过14600000人次.把“14600000”用科学记数法表示为( )
    A. B. C. D.
    【答案】B
    【解析】
    【分析】科学记数法的表现形式为的形式,其中,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n是正数,当原数绝对值小于1时n是负数;由此进行求解即可得到答案.
    【详解】解:.
    故选:B.
    【点睛】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的具体要求.
    4. 在体育测试中,7名女生仰卧起坐的成绩如下(次/分钟):38,42,42,45,43,45,45,则这组数据的众数是( )
    A 38 B. 42 C. 43 D. 45
    【答案】D
    【解析】
    【分析】根据众数的定义即可求解.
    【详解】解:∵45出现了3次,出现次数最多,
    ∴众数为45.
    故选D.
    【点睛】本题考查了求众数,掌握众数的定义是解题的关键.众数:在一组数据中出现次数最多的数.
    5. 函数中自变量的取值范围是( )
    A. B. C. D.
    【答案】A
    【解析】
    【分析】根据二次根式有意义的条件列出不等式,即可求解.
    【详解】解:∵,
    ∴.
    故选A.
    【点睛】本题考查了求函数自变量取值范围,二次根式有意义的条件,掌握二次根式有意义的条件是解题的关键.
    6. 的三边长分别为2,3,4,另有一个与它相似的三角形,其最长边为12,则的周长是( )
    A. 54 B. 36 C. 27 D. 21
    【答案】C
    【解析】
    【分析】根据相似三角形的性质求解即可.
    【详解】解:∵△ABC与△DEF相似,△ABC的最长边为4,△DEF的最长边为12,
    ∴两个相似三角形的相似比为1:3,
    ∴△DEF的周长与△ABC的周长比为3:1,
    ∴△DEF的周长为3×(2+3+4)=27,
    故选:C.
    【点睛】本题主要考查了相似三角形的性质,熟知相似三角形的周长之比等于相似之比是解题的关键.
    7. 如图,有一个半径为2的圆形时钟,其中每个刻度间的弧长均相等,过9点和11点的位置作一条线段,则钟面中阴影部分的面积为( )


    A. B. C. D.
    【答案】B
    【解析】
    【分析】阴影部分的面积等于扇形面积减去三角形面积,分别求出扇形面积和等边三角形的面积即可.
    【详解】解:如图,过点OC作OD⊥AB于点D,


    ∵∠AOB=2×=60°,
    ∴△OAB是等边三角形,
    ∴∠AOD=∠BOD=30°,OA=OB=AB=2,AD=BD=AB=1,
    ∴OD=,
    ∴阴影部分的面积为,
    故选:B.
    【点睛】本题考查了扇形面积、等边三角形的面积计算方法,掌握扇形面积、等边三角形的面积的计算方法是正确解答的关键.
    8. 如图,将矩形ABCD沿着GE、EC、GF翻折,使得点A、B、D恰好都落在点O处,且点G、O、C在同一条直线上,同时点E、O、F在另一条直线上.小炜同学得出以下结论:①GF∥EC;②AB=AD;③GE=DF;④OC=2OF;⑤△COF∽△CEG.其中正确的是( )

    A. ①②③ B. ①③④ C. ①④⑤ D. ②③④
    【答案】B
    【解析】
    【分析】由折叠的性质知∠FGE=90°,∠GEC=90°,点G为AD的中点,点E为AB的中点,设AD=BC=2a,AB=CD=2b,在Rt△CDG中,由勾股定理求得b=,然后利用勾股定理再求得DF=FO=,据此求解即可.
    【详解】解:根据折叠的性质知∠DGF=∠OGF,∠AGE=∠OGE,
    ∴∠FGE=∠OGF+∠OGE=(∠DGO+∠AGO) =90°,
    同理∠GEC=90°,
    ∴∠FGE+∠GEC=180°
    ∴GF∥EC;故①正确;
    根据折叠的性质知DG=GO,GA=GO,
    ∴DG=GO=GA,即点G为AD的中点,
    同理可得点E为AB的中点,
    设AD=BC=2a,AB=CD=2b,则DG=GO=GA=a,OC=BC=2a,AE=BE=OE=b,
    ∴GC=3a,
    在Rt△CDG中,CG2=DG2+CD2,
    即(3a)2=a2+(2b)2,
    ∴b=,
    ∴AB=2=AD,故②不正确;
    设DF=FO=x,则FC=2b-x,
    在Rt△COF中,CF2=OF2+OC2,
    即(2b-x)2=x2+(2a)2,
    ∴x==,即DF=FO=,
    GE=a,
    ∴,
    ∴GE=DF;故③正确;
    ∴,
    ∴OC=2OF;故④正确;
    ∵∠FCO与∠GCE不一定相等,
    ∴△COF∽△CEG不成立,故⑤不正确;
    综上,正确的有①③④,
    故选:B.
    【点睛】本题主要考查了折叠问题,解题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.
    二、填空题(本大题共8小题,不需要写出解答过程,请把答案直接填写在答题卡相应位置上)
    9. 计算:______.
    【答案】
    【解析】
    【分析】直接运用合并同类项法则进行计算即可得到答案.
    【详解】解:


    故答案为:.
    【点睛】本题主要考查了合并同类项,熟练掌握合并同类项法则是解答本题的关键.
    10. 已知∠A的补角是60°,则_________.
    【答案】120
    【解析】
    【分析】如果两个角的和等于180°,就说这两个角互为补角.由此定义即可求解.
    【详解】解:∵∠A的补角是60°,
    ∴∠A=180°-60°=120°,
    故答案为:120.
    【点睛】本题考查补角的定义,熟练掌握两个角互为补角的定义是解题的关键.
    11. 写出一个在1到3之间的无理数:_________.
    【答案】(答案不唯一)
    【解析】
    【分析】由于12=1,32=9,所以只需写出被开方数在1和9之间的,且不是完全平方数的数即可求解.
    【详解】解:1和3之间的无理数如.
    故答案为:(答案不唯一).
    【点睛】本题主要考查常见无理数定义和性质,解题关键是估算无理数的整数部分和小数部分.
    12. 若关于的一元二次方程的一个解是,则的值是___.
    【答案】1
    【解析】
    【分析】根据一元二次方程解的定义把代入到进行求解即可.
    【详解】解:∵关于x的一元二次方程的一个解是,
    ∴,
    ∴,
    故答案为:1.
    【点睛】本题主要考查了一元二次方程解的定义,代数式求值,熟知一元二次方程解的定义是解题的关键.
    13. 如图,是⊙的直径,是⊙的切线,为切点,连接,与⊙交于点,连接.若,则_________.


    【答案】49
    【解析】
    【分析】利用同弧所对的圆周角等于圆心角的一半求得∠B=∠AOD=41°,根据AC是⊙O的切线得到∠BAC=90°,即可求出答案.
    【详解】解:∵∠AOD=82°,
    ∴∠B=∠AOD=41°,
    ∵AC为圆的切线,A为切点,
    ∴∠BAC=90°,
    ∴∠C=90°-41°=49°
    故答案为49.
    【点睛】此题考查圆周角定理,圆的切线的性质定理,直角三角形两锐角互余,正确理解圆周角定理及切线的性质定理是解题的关键.
    14. 如图,在正方形网格中,的顶点、、都在网格线上,且都是小正方形边的中点,则_________.


    【答案】##0.8
    【解析】
    【分析】如图所示,过点C作CE⊥AB于E,先求出CE,AE的长,从而利用勾股定理求出AC的长,由此求解即可.
    【详解】解:如图所示,过点C作CE⊥AB于E,
    由题意得,
    ∴,
    ∴,
    故答案为:.

    【点睛】本题主要考查了求正弦值,勾股定理与网格问题正确作出辅助线,构造直角三角形是解题的关键.
    15. 如图,一位篮球运动员投篮,球沿抛物线运行,然后准确落入篮筐内,已知篮筐的中心离地面的高度为,则他距篮筐中心的水平距离是_________.

    【答案】4
    【解析】
    【分析】将代入中可求出x,结合图形可知,即可求出OH.
    【详解】解:当时,,解得:或,
    结合图形可知:,
    故答案为:4
    【点睛】本题考查二次函数的实际应用:投球问题,解题的关键是结合函数图形确定x的值.
    16. 如图,在中,.利用尺规在、上分别截取、,使;分别以、为圆心,大于的长为半径作弧,两弧在内交于点;作射线交于点.若,则的长为_________.

    【答案】
    【解析】
    【分析】如图所示,过点H作HM⊥BC于M,由作图方法可知,BH平分∠ABC,即可证明∠CBH=∠CHB,得到,从而求出HM,CM的长,进而求出BM的长,即可利用勾股定理求出BH的长.
    详解】解:如图所示,过点H作HM⊥BC于M,
    由作图方法可知,BH平分∠ABC,
    ∴∠ABH=∠CBH,
    ∵四边形ABCD是平行四边形,
    ∴,
    ∴∠CHB=∠ABH,∠C=180°-∠ABC=30°,
    ∴∠CBH=∠CHB,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴,
    故答案为:.

    【点睛】本题主要考查了角平分线的尺规作图,平行四边形的性质,含30度角的直角三角形的性质,勾股定理,等腰三角形的性质与判定等等,正确求出CH的长是解题的关键.
    三、解答题(本大题共11小题,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)
    17. 计算:.
    【答案】2
    【解析】
    【分析】根据有理数的乘法,二次根式的性质,零指数的计算法则求解即可.
    【详解】解:原式

    【点睛】本题主要考查了有理数的乘法,求算术平方根,零指数,熟知相关计算法则是解题的关键.
    18. 解不等式2x﹣1>,并把它解集在数轴上表示出来.

    【答案】不等式的解集为x>1,在数轴上表示见解析.
    【解析】
    【详解】试题分析:根据不等式的基本性质去分母、去括号、移项可得不等式的解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则在数轴上将解集表示出来.
    试题解析:
    去分母,得:4x﹣2>3x﹣1,
    移项,得:4x﹣3x>2﹣1,
    合并同类项,得:x>1,
    将不等式解集表示在数轴上如图:

    19. 化简:.
    【答案】
    【解析】
    【分析】根据异分母分式的加法计算法则求解即可.
    【详解】解:原式





    【点睛】本题主要考查了异分母分式的加法,熟知相关计算法则是解题的关键.
    20. 为落实国家“双减”政策,某校为学生开展了课后服务,其中在体育类活动中开设了四种运动项目:A乒乓球,B排球,C篮球,D跳绳.为了解学生最喜欢哪一种运动项目,随机抽取部分学生进行调查(每位学生仅选一种),并将调查结果制成如下尚不完整统计图表.
    问卷情况统计表:
    运动项目
    人数
    A乒乓球
    m
    B排球
    10
    C篮球
    80
    D跳绳
    70

    (1)本次调查的样本容量是_______,统计表中m=_________;
    (2)在扇形统计图中,“B排球”对应的圆心角的度数是_________;
    (3)若该校共有2000名学生,请你估计该校最喜欢“A乒乓球”的学生人数.
    【答案】(1)200,40
    (2)18 (3)约为400人
    【解析】
    【分析】(1)从两个统计图中可知,“C篮球”的人数80人,占调查人数的40%,可求出本次调查的样本容量,进而求出m的值;
    (2)“B排球”的人数10人,据此可求得相应的圆心角;
    (3)用总人数乘以“A乒乓球”的学生所占的百分比即可.
    【小问1详解】
    解:本次调查的样本容量是:80÷40%=200(人),
    m=200-10-80-70=40;
    故答案为:200,40;
    【小问2详解】
    解:扇形统计图中B部分扇形所对应的圆心角是360°×=18°,
    故答案为:18;
    【小问3详解】
    解:(人),
    估计该校最喜欢“A乒乓球”的学生人数约为400人.
    【点睛】此题考查统计表、扇形统计图的结合,从两个统计图中获取数量和数量之间的关系是解决问题的前提.
    21. “石头、剪子、布”是一个广为流传的游戏,规则是:甲、乙两人都做出“石头”“剪子”“布”3种手势中的1种,其中“石头”赢“剪子”,“剪子”赢“布”,“布”赢“石头”,手势相同不分输赢.假设甲、乙两人每次都随意并且同时做出3种手势中的1种.
    (1)甲每次做出“石头”手势的概率为_________;
    (2)用画树状图或列表的方法,求乙不输的概率.
    【答案】(1)
    (2)见解析,
    【解析】
    【分析】(1)根据概率计算公式求解即可;
    (2)先画树状图得出所有的等可能性的结果数,然后找到乙不输的结果数,最后利用概率计算公式求解即可.
    【小问1详解】
    解:∵甲每次做出的手势只有“石头”、“剪子”、“布”其中的一种,
    ∴甲每次做出“石头”手势的概率为;
    【小问2详解】
    解:树状图如图所示:

    甲、乙两人同时做出手势共有9种等可能结果,其中乙不输的共有6种,
    ∴(乙不输).
    答:乙不输的概率是.
    【点睛】本题主要考查了简单的概率计算,利用列表法或树状图法求解概率,熟知概率计算公式是解题的关键.
    22. 我国古代数学名著《九章算术》中有这样一个问题:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”其大意是:今有几个人共同出钱购买一件物品.每人出8钱,剩余3钱;每人出7钱,还缺4钱.问人数、物品价格各是多少?请你求出以上问题中的人数和物品价格.
    【答案】有7人,物品价格是53钱
    【解析】
    【分析】设人数为人,根据“物品价格=8×人数-多余钱数=7×人数+缺少的钱数”可得方程,求解方程即可.
    【详解】解:设人数为人,由题意得

    解得.
    所以物品价格是.
    答:有7人,物品价格是53钱.
    【点睛】
    本题主要考查由实际问题抽象出一元一次方程,由实际问题列方程组是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的相等关系.
    23. 如图,在平面直角坐标系中,一次函数的图像与反比例函数的图像交于、两点.点,点的纵坐标为-2.

    (1)求反比例函数与一次函数的表达式;
    (2)求的面积.
    【答案】(1),
    (2)
    【解析】
    【分析】(1)通过点P坐标求出反比例函数解析式,再通过解析式求出点Q坐标,从而解出PQ一次函数解析式;
    (2)令PQ与轴的交点为M,则三角形POQ的面积为OM乘以点P横坐标除以2加上OM乘以点Q横坐标除以2即可.
    【小问1详解】
    将代入,解得,
    ∴反比例函数表达式为.
    当时,代入,解得,即.
    将、代入,
    得,解得.
    ∴一次函数表达式为.
    【小问2详解】
    设一次函数的图像与轴交点为,

    将代入,得,即.
    ∵,,,
    ∴.
    【点睛】本题考查待定系数法求反比例函数解析式、一次函数解析式、求一次函数和反比例函数围成的三角形面积,掌握拆分法是解本题关键.
    24. 我市的花果山景区大圣湖畔屹立着一座古塔——阿育王塔,是苏北地区现存最高和最古老的宝塔.小明与小亮要测量阿育王塔的高度,如图所示,小明在点处测得阿育王塔最高点的仰角,再沿正对阿育王塔方向前进至处测得最高点的仰角,;小亮在点处竖立标杆,小亮的所在位置点、标杆顶、最高点在一条直线上,,.(注:结果精确到,参考数据:,,)

    (1)求阿育王塔的高度;
    (2)求小亮与阿育王塔之间的距离.
    【答案】(1)
    (2)
    【解析】
    【分析】(1)在中,由,解方程即可求解.
    (2) 证明,根据相似三角形的性质即可求解.


    【小问1详解】
    在中,∵,
    ∴.
    ∵,
    ∴.
    在中,由,
    得,
    解得.
    经检验是方程的解
    答:阿育王塔的高度约为.
    【小问2详解】
    由题意知,
    ∴,
    即,
    ∴.
    经检验是方程的解
    答:小亮与阿育王塔之间的距离约为.
    【点睛】本题考查了解直角三角形的应用,相似三角形的应用,掌握以上知识是解题的关键.
    25. 如图,四边形为平行四边形,延长到点,使,且.

    (1)求证:四边形为菱形;
    (2)若是边长为2的等边三角形,点、、分别在线段、、上运动,求的最小值.
    【答案】(1)证明见解析
    (2)
    【解析】
    【分析】(1)先根据四边形为平行四边形的性质和证明四边形为平行四边形,再根据,即可得证;
    (2)先根据菱形对称性得,得到,进一步说明的最小值即为菱形的高,再利用三角函数即可求解.
    【小问1详解】
    证明:∵四边形是平行四边形,
    ∴,,
    ∵,
    ∴,
    又∵点在的延长线上,
    ∴,
    ∴四边形为平行四边形,
    又∵,
    ∴四边形为菱形.
    【小问2详解】
    解:如图,由菱形对称性得,点关于的对称点在上,
    ∴,
    当、、共线时,

    过点作,垂足为,
    ∵,
    ∴的最小值即为平行线间的距离的长,
    ∵是边长为2的等边三角形,
    ∴在中,,,,
    ∴,
    ∴的最小值为.

    【点睛】本题考查了最值问题,考查了菱形的判定和性质,平行四边形的判定和性质,三角函数等知识,运用了转化的思想方法.将最值问题转化为求菱形的高是解答本题的关键.
    26. 已知二次函数,其中.


    (1)当该函数的图像经过原点,求此时函数图像的顶点的坐标;
    (2)求证:二次函数的顶点在第三象限;
    (3)如图,在(1)的条件下,若平移该二次函数的图像,使其顶点在直线上运动,平移后所得函数的图像与轴的负半轴的交点为,求面积的最大值.
    【答案】(1)
    (2)见解析 (3)最大值为
    【解析】
    【分析】(1)先利用待定系数法求出二次函数解析式,再将二次函数解析式化为顶点式即可得到答案;
    (2)先根据顶点坐标公式求出顶点坐标为,然后分别证明顶点坐标的横纵坐标都小于0即可;
    (3)设平移后图像对应的二次函数表达式为,则其顶点坐标为
    ,然后求出点B的坐标,根据平移后的二次函数顶点在直线上推出,过点作,垂足为,可以推出,由此即可求解.
    【小问1详解】
    解:将代入,
    解得.
    由,则符合题意,
    ∴,
    ∴.
    【小问2详解】
    解:由抛物线顶点坐标公式得顶点坐标为.
    ∵,
    ∴,
    ∴,
    ∴.
    ∵,
    ∴二次函数的顶点在第三象限.
    【小问3详解】
    解:设平移后图像对应的二次函数表达式为,则其顶点坐标为
    当时,,
    ∴.
    将代入,
    解得.
    ∵在轴的负半轴上,
    ∴.
    ∴.
    过点作,垂足为,
    ∵,
    ∴.
    在中,

    ,
    ∴当时,此时,面积有最大值,最大值为.

    【点睛】本题主要考查了待定系数法求二次函数解析式,二次函数的性质,二次函数的平移,二次函数的最值问题,正确理解题意,熟练掌握二次函数的相关知识是解题的关键.
    27. 【问题情境】在一次数学兴趣小组活动中,小昕同学将一大一小两个三角板按照如图1所示的方式摆放.其中,,.
    【问题探究】小昕同学将三角板绕点B按顺时针方向旋转.




    (1)如图2,当点落在边上时,延长交于点,求的长.
    (2)若点、、在同一条直线上,求点到直线的距离.
    (3)连接,取的中点,三角板由初始位置(图1),旋转到点、、首次在同一条直线上(如图3),求点所经过的路径长.
    (4)如图4,为的中点,则在旋转过程中,点到直线的距离的最大值是_____.
    【答案】(1)
    (2)
    (3)
    (4)
    【解析】
    【分析】(1)在Rt△BEF中,根据余弦的定义求解即可;
    (2)分点在上方和下方两种情况讨论求解即可;
    (3)取的中点,连接,从而求出OG=,得出点在以为圆心,为半径的圆上,然后根据弧长公式即可求解;
    (4)由(3)知,点在以为圆心,为半径的圆上,过O作OH⊥AB于H,当G在OH的反向延长线上时,GH最大,即点到直线的距离的最大,在Rt△BOH中求出OH,进而可求GH.
    【小问1详解】
    解:由题意得,,
    ∵在中,,,.
    ∴.
    【小问2详解】
    ①当点在上方时,
    如图一,过点作,垂足为,


    ∵在中,,,,
    ∴,
    ∴.
    ∵在中,,,
    ,,
    ∴.
    ∵点、、在同一直线上,且,
    ∴.
    又∵在中,,,,
    ∴,
    ∴.
    ∵在中,,
    ∴.
    ②当点在下方时,
    如图二,


    在中,∵,,,
    ∴.
    ∴.
    过点作,垂足为.
    在中,,
    ∴.
    综上,点到直线的距离为.
    【小问3详解】
    解:如图三,取的中点,连接,则.


    ∴点在以为圆心,为半径的圆上.
    当三角板绕点B顺时针由初始位置旋转到点、B、首次在同一条直线上时,点所经过的轨迹为所对的圆弧,圆弧长为.
    ∴点所经过的路径长为.
    【小问4详解】
    解:由(3)知,点在以为圆心,为半径的圆上,
    如图四,过O作OH⊥AB于H,


    当G在OH的反向延长线上时,GH最大,即点到直线的距离的最大,
    在Rt△BOH中,∠BHO=90°,∠OBH=30°,,
    ∴,
    ∴,
    即点到直线的距离的最大值为.
    【点睛】本题考查了勾股定理,旋转的性质,弧长公式,解直角三角形等知识,分点在上方和下方是解第(2)的关键,确定点G的运动轨迹是解第(3)(4)的关键.
    相关试卷

    2022年江苏省连云港市中考数学真题(解析版): 这是一份2022年江苏省连云港市中考数学真题(解析版),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年江苏省连云港市中考数学真题(解析版): 这是一份2023年江苏省连云港市中考数学真题(解析版),共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2022年江苏省连云港市中考数学真题(解析版): 这是一份2022年江苏省连云港市中考数学真题(解析版),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map