冀教版九年级上册25.6 相似三角形的应用精练
展开
这是一份冀教版九年级上册25.6 相似三角形的应用精练,共10页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
25.6相似三角形的应用同步练习冀教版数学九年级上册 一、单选题(共30分)1.(本题3分)泰勒斯是古希腊时期的思想家,科学家,哲学家,他最早提出了命题的证明.泰勒斯曾通过测量同一时刻标杆的影长,标杆的高度。金字塔的影长,推算出金字塔的高度。这种测量原理,就是我们所学的( )A.图形的平移 B.图形的旋转 C.图形的轴对称 D.图形的相似2.(本题3分)某天小明和小亮去某影视基地游玩,当小明给站在城楼上的小亮照相时,发现他自己的眼睛、凉亭顶端、小亮头顶三点恰好在一条直线上(如图).已知小明的眼睛离地面的距离为1.6米,凉亭顶端离地面的距离为1.9米,小明到凉亭的距离为2米,凉亭离城楼底部的距离为38米,小亮身高为1.7米.那么城楼的高度为( )A.7.6米 B.5.9米 C.6米 D.4.3米3.(本题3分)图1是装了液体的高脚杯示意图(数据如图),用去一部分液体后如图2所示,此时液面( )A. B.C. D.4.(本题3分)在同一时刻,身高1.70米的小强在阳光下的影长为0.85米,一棵大树的高为5.8米,则树的影长为( )A.10.6米 B.2.9米 C.11.6米 D.5.8米5.(本题3分)如图,方桌正上方的灯泡(看作一个点)发出的光线照射方桌后,在地面上形成阴影,已知方桌边长1.2m,桌面离地面1.2m,灯泡离地面3.6m,地面上阴影部分的面积为( )A. B. C. D.6.(本题3分)如图,小明在A时测得某树的影长为,B时又测得该树的影长为,若两次日照的光线互相垂直,则树的高度为( )A. B. C. D.7.(本题3分)如图,树AB在路灯O的照射下形成投影AC,已知路灯高,树影,树AB与路灯O的水平距离,则树的高度AB长是( )A. B. C. D.8.(本题3分)小明在测量楼高时,先测出楼房落在地面上的影长BA为15米(如图),然后在A处树立一根高2米的标杆,测得标杆的影长AC为3米,则楼高为A.10米 B.12米 C.15米 D.22.5米9.(本题3分)兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长为米的竹竿的影长为米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为米,一级台阶高为米,如图所示,若此时落在地面上的影长为米,则树高为( )A.11.5米 B.11.75米 C.11.8米 D.12.25米10.(本题3分)如图,身高为1.5米的某学生想测量一棵大树的高度,他沿着树影由向走,当走到点时,他的影子顶端正好与树的影子顶端重合.此时三点恰好在一条直线上.经测得米,米,则树的高度为( )A.3米 B.4米 C.4.5米 D.6米 二、填空题(共30分)11.(本题3分)小红家的阳台上放置了一个晒衣架,如图1,图2是晒衣架的侧面示意图,立杆AB、CD相交于点O,B、D两点在地面上,经测量得到AB=CD=136cm,OA=OC=51cm,OE=OF=34cm,现将晒衣架完全稳固张开,扣链EF成一条线段,且EF=32cm,垂挂在衣架上的连衣裙总长度小于多少时,连衣裙才不会拖在地面上?12.(本题3分)在某一时刻, 直立地面的一根竹竿的影长为 3 米,一根旗杆的影长为 25 米, 已知这根竹竿的长度为 米, 那么这根旗杆的高度为____________米.13.(本题3分)如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5 m,CD=8 m,则树高AB=____m.14.(本题3分)《九章算术》是我国古代数学名著,书中有如下问题:“今有井径五尺,不知其深,立三尺木于井上,从木末望水岸,入径五寸.问井深几何?”意思是:如图,井径尺,立木高尺,寸尺,则井深为______尺.15.(本题3分)如图所示, 用手电来测量古城墙高度,将水平的平面镜放置在点 处, 光线从点 出发,经过平面镜反射后,光线刚好照到古城墙 的顶端 处. 如果 , 米, 米, 米, 那么该古城墙的高度是__________米16.(本题3分)如图,在河两岸分别有A,B两村,现测得A,B,D在一条直线上,A、C、E在一条直线上,,若米,米, 米,则A、B两村间的距离为___________米.17.(本题3分)《九章算术》是中国古代的数学专著,是“算经十书”(汉唐之间出现的十部古算书)中最重要的一种.中有下列问题:“今有邑方不知大小,各中开门.出北门八十步有木,出西门二百四十五步见木.问邑方有几何?”意思是:如图,点M、点N分别是正方形ABCD的边AD、AB的中点,,,EF过点A,且步,步,已知每步约40厘米,则正方形的边长约为__________米.18.(本题3分)小红家的阳台上放置了一个晾衣架如图1,图2是晾衣架的侧面示意图,立杆AB,CD相交于点O,B,D两点立于地面,经测量,,,现将晾衣架完全稳固张开,扣链E成一条线段,且.垂挂在衣架上的连衣裙总长度小于________cm时,连衣裙才不会拖到地面上. 19.(本题3分)如图所示,某校宣传栏后面2米处种了一排树,每隔2米一棵,共种了6棵,小勇站在距宣传栏中间位置的垂直距离3米处,正好看到两端的树干,其余的4棵均被挡住,那么宣传栏的长为 ______________米.(不计宣传栏的厚度) 20.(本题3分)如图,小颖同学用自制的直角三角形纸板DEF测量树的高度AB,她调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上,已知纸板的两条边DE=8cm,DF=10cm,测得边DF离地面的高度AC=1.5m,CD=8m,则树高AB=________m. 三、解答题(共60分)21.(本题12分)如图,为了估算河的宽度,我们可以在河对岸选定一个目标点P, 在近岸取点Q和S, 使点P、Q、S共线且直线PS与河垂直,接着再过点S且与PS垂直的直线a上选择适当的点T, 确定PT与过点Q且垂直PS的直线b的交点R. 如果测得QS=45m,ST=90m,QR=60m, 求河的宽度PQ. 22.(本题12分)在“测量物体的高度”活动中,某数学兴趣小组的两名同学选择了测量学校里的两棵树的高度,在同一时刻的阳光下,他们分别做了以下工作;小芳:测得一根长为1米的竹竿的影长为0.8米,甲树的影长为4.08米(如图1).小华:发现乙树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图2),墙壁上的影长为1.2米,落在地面上的影长为2.4米.(1)在横线上直接填写甲树的高度为_____________米;(2)画出测量乙树高度的示意图,并求出乙树的高度.23.(本题12分)为了测量一棵大树的高度,准备了如下测量工具:①镜子;②皮尺;③长为2m的标杆;④高为1.5m的测角仪(能测量仰角和俯角的仪器),请根据你所设计的测量方案,回答下列问题:(1)在你设计的方案中,选用的测量工具是___;(用工具序号填写)(2)在下图中画出你的测量方案示意图;(3)你需要测量示意图中的哪些数据,并用a,b,c,,等字母表示测得的数据;(4)写出求树高的算式:AB=___m.(用a,b,c,,等字母表示)24.(本题12分)小张在课外活动时,发现一个烟囱在墙上的影子正好和自己一样高.他测得当时自己在平地上的影子长米,烟囱到墙的距离是米.如果小张的身高是米,你能否据此算出烟囱的高度?25.(本题12分)某班在学习《利用相似三角形测高》时开展了“测量学校操场上旗杆的高度”的活动.小明将镜子放在离旗杆32m的点C处(即AC=32m),然后沿直线AC后退,在点D处恰好看到旗杆顶端B在镜子中的像与镜子上的标记重合(如图),根据物理学知识可知:法线l⊥AD,∠1=∠2.若小明的眼睛离地面的高度DE为1.5m,CD=3m,求旗杆AB的高度.(要有证明过程,再求值)
参考答案:1.D2.B3.C4.B5.A6.B7.A8.A9.C10.D11.12012.1513.5.514.2715.1016.7017.11218.12019.620.7.521.90米22.(1)5.1(2)4.2米 23.(1)①②(2)见解析(3)EA(镜子离树的距离)=am,EC(人离镜子的距离)=bm,DC(目高)=cm(4) 24.烟囱高米.25.旗杆AB的高度为16m.
相关试卷
这是一份初中数学25.6 相似三角形的应用同步训练题,共9页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份数学九年级上册第25章 图形的相似25.6 相似三角形的应用巩固练习,共7页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份初中冀教版25.6 相似三角形的应用达标测试,共10页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。