- 2022秋高中数学第三章圆锥曲线的方程3.2双曲线3.2.1双曲线及其标准方程课后提能训练新人教A版选择性必修第一册 试卷 0 次下载
- 2022秋高中数学第三章圆锥曲线的方程3.2双曲线3.2.2双曲线的几何性质课后提能训练新人教A版选择性必修第一册 试卷 0 次下载
- 2022秋高中数学第三章圆锥曲线的方程3.2双曲线3.2.4双曲线专项训练课后提能训练新人教A版选择性必修第一册 试卷 0 次下载
- 2022秋高中数学第三章圆锥曲线的方程3.3抛物线3.3.1抛物线及其标准方程课后提能训练新人教A版选择性必修第一册 试卷 0 次下载
- 2022秋高中数学第三章圆锥曲线的方程3.3抛物线3.3.2抛物线的简单几何性质课后提能训练新人教A版选择性必修第一册 试卷 0 次下载
人教A版 (2019)选择性必修 第一册3.2 双曲线课后作业题
展开第三章 3.2 3.2.3
A级——基础过关练
1.直线l过点(,0)且与双曲线x2-y2=2仅有一个公共点,则这样的直线有( )
A.1条 B.2条
C.3条 D.4条
【答案】C
【解析】点(,0)即为双曲线的右顶点,过该点有两条与双曲线渐近线平行的直线与双曲线仅有一个公共点,另过该点且与x轴垂直的直线也与双曲线只有一个公共点,故这样的直线只有3条.
2.已知双曲线E的中心为原点,F(3,0)是E的焦点,过F的直线l与E相交于A,B两点,且AB的中点为N(-12,-15),则双曲线E的方程为( )
A.-=1 B.-=1
C.-=1 D.-=1
【答案】B
【解析】由c=3,设双曲线方程为-=1,kAB==1,设A(x1,y1),B(x2,y2),则-=1①,-=1②,由①-②,得-=0.又因为N(-12,-15)为AB中点,所以x1+x2=-24,y1+y2=-30.所以=.所以==1.所以a2=4.所以双曲线方程为-=1.
3.若直线y=kx与双曲线-=1相交,则k的取值范围为( )
A. B.(-1,1)
C.(-2,2) D.-,
【答案】A
【解析】双曲线-=1的渐近线方程为y=±x,若直线与双曲线相交,数形结合,得k∈.
4.设直线l过双曲线C的一个焦点,且与C的一条对称轴垂直,l与C交于A,B两点,|AB|为C的实轴长的2倍,则双曲线C的离心率为( )
A. B.
C.2 D.3
【答案】B
【解析】由题意不妨设l:x=-c,则|AB|=,又因为|AB|=2×2a,故b2=2a2,所以e===.
5.已知直线l:y=x与双曲线C:-=1(a>0,b>0)的右支交于点M,OM(O是坐标原点)的垂直平分线经过C的右焦点,则双曲线C的离心率为( )
A. B.+1
C. D.
【答案】C
【解析】如图,依题意可得∠MOF=∠OMF=30°,OF=MF=c,所以M,所以-=1,结合c2=a2+b2,可得9c4-16a2c2+4a4=0,所以9e4-16e2+4=0,解得e2=,则e=.
6.已知双曲线-=1(a>0,b>0)的左、右焦点分别为F1,F2,点P在双曲线的右支上,且|PF1|=4|PF2|,则双曲线的离心率e的最大值为( )
A. B.
C. D.2
【答案】C
【解析】由双曲线定义知|PF1|-|PF2|=2a,又已知|PF1|=4|PF2|,所以|PF1|=a,|PF2|=a,在△PF1F2中,由余弦定理,得cos∠F1PF2==-e2,要求e的最大值,即求cos∠F1PF2的最小值,因为cos∠F1PF2≥-1,所以cos∠F1PF2=-e2≥-1,解得e≤,即e的最大值为.
7.(多选)已知双曲线-=1的右焦点为F,若过点F的直线与双曲线的右支有且只有一个交点,则此直线斜率的值可以是( )
A.- B.0
C. D.1
【答案】ABC
【解析】由题意知,F(4,0),双曲线的两条渐近线方程为y=±x,当过点F的直线与渐近线平行时,满足与右支有且只有一个交点,画出图形(图略),通过图形可知直线斜率的取值范围是.故选ABC.
8.已知直线l:x-y+m=0与双曲线x2-=1交于不同的两点A,B,若线段AB的中点在圆x2+y2=5上,则m的值是________.
【答案】±1
【解析】由消去y得x2-2mx-m2-2=0,Δ=4m2+4m2+8=8m2+8>0.设A(x1,y1),B(x2,y2),则x1+x2=2m,y1+y2=x1+x2+2m=4m,所以线段AB的中点坐标为(m,2m).又因为点(m,2m)在圆x2+y2=5上,所以5m2=5,所以m=±1.
9.已知F是双曲线C:x2-=1的右焦点,P是C左支上一点,A(0,6),当△APF的周长最小时,该三角形的面积为________.
【答案】12
【解析】由已知a=1,b=2,c=3,所以F(3,0),F′(-3,0).又因为A(0,6),所以|AF|==15,△APF周长l=|PA|+|PF|+|AF|.又因为|PF|-|PF′|=2,所以|PF|=|PF′|+2,所以l=|PA|+|PF′|+2+15≥|AF′|+17=32,当且仅当A,P,F′三点共线时,△APF周长最小,如图所示.设P(x,y),直线AF′的方程为+=1,联立得消去x得y2+36y-96=0,解得y=-8(舍去)或y=2,则P(x,2),所以S△APF=S△AF′F-S△PF′F=×6×6-×6×2=12.
10.已知双曲线的中心在原点,焦点F1,F2在坐标轴上,离心率为,且点(4,-),点M(3,m)都在双曲线上.
(1)求双曲线的方程;
(2)求证:·=0.
(1)解:因为e=,则双曲线的实轴、虚轴相等,
所以可设双曲线方程为x2-y2=λ.
因为双曲线过点(4,-),
所以16-10=λ,即λ=6.所以双曲线方程为x2-y2=6.
(2)证明:设F1(-2,0),F2(2,0),
则=(-2-3,-m),=(2-3,-m).
所以·=(3+2)×(3-2)+m2=-3+m2.
因为点M在双曲线上,所以9-m2=6,即m2-3=0,
所以·=0.
B级——能力提升练
11.已知双曲线C:-=1(a>0,b>0)的右焦点为F,点B是虚轴的一个端点,线段BF与双曲线C的右支交于点A,若=2,且||=4,则双曲线C的方程为( )
A.-=1 B.-=1
C.-=1 D.-=1
【答案】D
【解析】不妨设B(0,b),由=2,F(c,0),可得A,代入双曲线C的方程可得×-=1,所以=①.又因为||==4,c2=a2+b2,所以a2+2b2=16②.由①②可得a2=4,b2=6,所以双曲线C的方程为-=1.
12.(多选)已知双曲线的中心在原点,焦点F1,F2在坐标轴上,离心率为,且过点(4,-),点M(3,m)在双曲线上,则( )
A.双曲线的方程为x2-y2=6 B.m=3
C.·=0 D.△F1MF2的面积为6
【答案】ACD
【解析】∵e=,∴双曲线的实轴、虚轴相等,设双曲线方程为x2-y2=λ,∵双曲线过点(4,-),∴16-10=λ,即λ=6,∴双曲线方程为x2-y2=6,A正确.不妨设F1,F2分别为双曲线的左、右焦点,则=(-2-3,-m),=(2-3,-m),∴·=(3+2)×(3-2)+m2=-3+m2,∵点M在双曲线上,∴9-m2=6,即m2-3=0,∴·=0, m=±,B错误,C正确.△F1MF2的底边长|F1F2|=4,∴△F1MF2的高h=|m|=,∴△F1MF2的面积为×4×=6,D正确.故选ACD.
13.设双曲线-=1的右顶点为A,右焦点为F.过点F且与双曲线的一条渐近线平行的直线与另一条渐近线交于点B,则△AFB的面积为________.
【答案】
【解析】根据题意,得a2=9,b2=16,所以c==5,且A(3,0),F(5,0).因为双曲线-=1的渐近线方程为y=±x,所以直线BF的方程为y=±(x-5).①若直线BF的方程为y=(x-5),与渐近线y=-x交于点B,此时S△AFB=|AF|·|yB|=×2×=;②若直线BF的方程为y=-(x-5),与渐近线y=x交于点B,此时S△AFB=|AF|·|yB|=×2×=.因此,△AFB的面积为.
14.斜率为4的直线l与双曲线-=1(a>0,b>0)交于A,B两点.M为A,B的中点,且直线OM的斜率为,则双曲线的渐近线方程为________;若双曲线的一个焦点F到一条渐近线的距离为,则双曲线方程为________.
【答案】y=±x x2-=1
【解析】设A(x1,y1),B(x2,y2),M(x0,y0),则=4,且-=1①,-=1②,由①-②,得-=0,即·=,所以·=,即kOM·kAB=,所以=×4=2,=,所以渐近线方程为y=±x.焦点F(±c,0),渐近线方程为x±y=0,所以=,所以c=,由解得a=1,b=,所以双曲线方程为x2-=1.
15.已知双曲线3x2-y2=3,直线l过其右焦点F2,且倾斜角为45°,与双曲线交于A,B两点,试问A,B两点是否位于双曲线的同一支上?并求弦AB的长.
解:因为直线l过点F2且倾斜角为45°,
所以直线l的方程为y=x-2.
代入双曲线方程,得2x2+4x-7=0.
设A(x1,y1),B(x2,y2),因为x1·x2=-<0,
所以A,B两点分别位于双曲线的左、右两支上.
因为x1+x2=-2,x1·x2=-,
所以|AB|=|x1-x2|
=·
=·=6.
数学人教A版 (2019)3.2 双曲线同步测试题: 这是一份数学人教A版 (2019)3.2 双曲线同步测试题,共4页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。
人教A版 (2019)选择性必修 第一册3.2 双曲线当堂检测题: 这是一份人教A版 (2019)选择性必修 第一册3.2 双曲线当堂检测题,共5页。试卷主要包含了已知直线l,已知椭圆C1,已知F是双曲线C,已知双曲线C等内容,欢迎下载使用。
人教A版 (2019)选择性必修 第一册3.2 双曲线同步练习题: 这是一份人教A版 (2019)选择性必修 第一册3.2 双曲线同步练习题,共4页。