- 2022秋高中数学第六章计数原理6.1分类加法计数原理与分步乘法计数原理第1课时分类加法计数原理与分步乘法计数原理课后提能训练新人教A版选择性必修第三册 试卷 2 次下载
- 2022秋高中数学第六章计数原理6.1分类加法计数原理与分步乘法计数原理第2课时分类加法计数原理与分布乘法计数原理的应用课后提能训练新人教A版选择性必修第三册 试卷 2 次下载
- 2022秋高中数学第六章计数原理6.2排列与组合6.2.2排列数课后提能训练新人教A版选择性必修第三册 试卷 2 次下载
- 2022秋高中数学第六章计数原理6.2排列与组合6.2.3组合课后提能训练新人教A版选择性必修第三册 试卷 2 次下载
- 2022秋高中数学第六章计数原理6.2排列与组合6.2.4组合数课后提能训练新人教A版选择性必修第三册 试卷 2 次下载
数学选择性必修 第三册6.2 排列与组合课后测评
展开第六章 6.2.1
A级——基础过关练
1.从3个不同的数字中取出2个:①相加;②相减;③相乘;④相除;⑤一个为被开方数,一个为根指数.上述问题为排列问题的个数为( )
A.2 B.3
C.4 D.5
【答案】B 【解析】排列与顺序有关,故②④⑤是排列.
2.(多选)下面问题中,不是排列问题的是( )
A.由1,2,3三个数字组成无重复数字的三位数
B.从40人中选5人组成篮球队
C.从100人中选2人抽样调查
D.从1,2,3,4,5中选2个数组成集合
【答案】BCD 【解析】选项A中组成的三位数与数字的排列顺序有关,选项B、C、D只需取出元素即可,与元素的排列顺序无关.
3.从2,3,5,7四个数中任选两个分别相除,则得到的不同结果有( )
A.6个 B.10个
C.12个 D.16个
【答案】C 【解析】不同结果有4×3=12(个).
4.从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a,b,共可得到lg a-lg b的不同值的个数是( )
A.9 B.10
C.18 D.20
【答案】C 【解析】 lg a-lg b=lg,从1,3,5,7,9中任取两个数分别记为a,b,共有5×4=20(种),其中lg=lg,lg=lg,故其可得到18种结果.
5.四张卡片上分别标有数字“2”“0”“1”“1”,则由这四张卡片可组成不同的四位数的个数为( )
A.6 B.9
C.12 D.24
【答案】B 【解析】可组成下列四位数:1 012,1 021,1 102,1 120,1 201,1 210,2 011,2 101,2 110,共9个.
6.某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了________条毕业留言(用数字作答).
【答案】1 560 【解析】根据题意,得40×39=1 560,故全班共写了1 560条毕业留言.
7.8种不同的菜种,任选4种种在不同土质的4块地上,有________种不同的种法(用数字作答).
【答案】1 680 【解析】将4块不同土质的地看作4个不同的位置,从8种不同的菜种中任选4种种在4块不同土质的地上,则本题即为从8个不同元素中任选4个元素的排列问题.所以不同的种法共有8×7×6×5=1 680(种).
8.某信号兵用红、黄、蓝3面旗从上到下挂在竖直的旗杆上表示信号,每次可以任挂1面、2面或3面,并且不同的顺序表示不同的信号,则一共可以表示________种不同的信号.
【答案】15 【解析】第1类,挂1面旗表示信号,有3种不同方法;第2类,挂2面旗表示信号,有3×2=6(种)不同方法;第3类,挂3面旗表示信号,有3×2×1=6(种)不同方法.根据分类加法计数原理,可以表示的信号共有3+3×2+3×2×1=15(种).
9.判断下列问题是否为排列问题:
(1)北京、上海、天津三个民航站之间的直达航线的飞机票的价格(假设来回的票价相同);
(2)选2个小组分别去植树和种菜;
(3)选2个小组去种菜;
(4)选10人组成一个学习小组;
(5)选3个人分别担任班长、学习委员、生活委员;
(6)某班40名学生在假期相互通信.
解:(1)中票价只有三种,虽然机票是不同的,但票价是一样的,不存在顺序问题,所以不是排列问题;(2)植树和种菜是不同的,存在顺序问题,属于排列问题;(3)(4)不存在顺序问题,不属于排列问题;(5)中每个人的职务不同,例如甲当班长或当学习委员是不同的,存在顺序问题,属于排列问题;(6)A给B写信与B给A写信是不同的,所以存在着顺序问题,属于排列问题.所以在上述各题中(2)(5)(6)属于排列问题.
10.10个人走进只有6把不同椅子的屋子,若每把椅子必须且只能坐一人,共有多少种不同的坐法?
解:10个人坐6把不同的椅子,每个人有6种选择,故有610种不同的坐法.
B级——能力提升练
11.(多选)下列选项是排列问题的是( )
A.从甲、乙、丙三名同学中选出两名分别参加数学、物理兴趣小组
B.从甲、乙、丙三名同学中选出两人参加一项活动
C.从a,b,c,d中选出3个字母
D.从1,2,3,4,5这五个数字中取出两个数字组成一个两位数
【答案】AD 【解析】由排列的定义知AD是排列问题.
12.从1,2,3,4中,任取两个不同数字组成平面直角坐标系中一个点的坐标,则组成不同点的个数为( )
A.2 B.4
C.12 D.24
【答案】C 【解析】本题相当于从4个元素中取2个元素的排列,即4×3=12.
13.从5本不同的书中选2本送给2名同学,每人1本,则送法种数为( )
A.5 B.10
C.20 D.60
【答案】C 【解析】从5本不同的书中选2本送给2名同学,每人一本,是一个排列问题,由排列的定义可知共有5×4=20(种)不同的送法.
14.将4张相同的博物馆的参观票分给5名同学,每名同学至多1张,并且票必须分完,那么不同的分法的种数为( )
A.54 B.45
C.5×4×3×2 D.5
【答案】D 【解析】由于参观票只有4张,而人数为5人,且每名同学至多1张,故一定有1名同学没有票.因此从5名同学中选出1名没有票的同学,有5种选法.又因为4张参观票是相同的,不加以区分,所以不同的分法有5种.
15.从a,b,c,d,e五个元素中每次取出三个元素,可组成________个以b为首的不同的排列,它们分别是__________________________________________.
【答案】12 bac,bad,bae,bca,bcd,bce,bda,bdc,bde,bea,bec,bed. 【解析】画出树状图如下:
可知共12个,它们分别是bac,bad,bae,bca,bcd,bce,bda,bdc,bde,bea,bec,bed.
16.5个小朋友站成一圈,不同的站法一共有______种.
【答案】24 【解析】将5个小朋友编为1~5号,因为12345,23451,34512,45123,51234围成一个圈后,就是一个排列,所以按5个小朋友对应5个位置算出的排列数还需“÷5”,即5×4×3×2×1÷5=24.
17.京沪高速铁路自北京南站至上海虹桥站,双线铁路全长1 318公里,途经北京、天津、河北、山东、安徽、江苏、上海7个省市,设立包括北京南、天津西、济南西、南京南、苏州北、上海虹桥等在内的21个车站,计算铁路部门要为这21个车站准备多少种不同的火车票?
解:对于两个火车站A和B,从A到B的火车票与从B到A的火车票不同,因为每张票对应一个起点站和一个终点站.因此,结果应为从21个不同元素中,每次取出2个不同元素的排列数21×20=420(种).所以一共需要为这21个车站准备420种不同的火车票.
C级——探究创新练
18.某国的篮球职业联赛共有16支球队参加.
(1)每队与其余各队在主客场分别比赛一次,共要进行多少场比赛?
(2)若16支球队恰好8支来自北部赛区,8支来自南部赛区,为增加比赛观赏度,各自赛区分别采用(1)中的赛制决出赛区冠军后,再进行一场总冠军赛,共要进行多少场比赛?
解:(1)任意两队之间要进行一场主场比赛及一场客场比赛,对应于从16支球队任取两支的一个排列,比赛的总场次是16×15=240.
(2)由(1)中的分析,比赛的总场次是8×7×2+1=113.
人教A版 (2019)选择性必修 第三册6.2 排列与组合一课一练: 这是一份人教A版 (2019)选择性必修 第三册6.2 排列与组合一课一练,共6页。试卷主要包含了化简的值是,若=2,则m的值为,故选A,4名男同学、3名女同学站成一排等内容,欢迎下载使用。
高中数学人教A版 (2019)选择性必修 第三册6.2 排列与组合课后练习题: 这是一份高中数学人教A版 (2019)选择性必修 第三册6.2 排列与组合课后练习题,共6页。
高中数学人教A版 (2019)选择性必修 第三册6.2 排列与组合随堂练习题: 这是一份高中数学人教A版 (2019)选择性必修 第三册6.2 排列与组合随堂练习题,共5页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。