所属成套资源:高考数学(理数)一轮复习考点梳理与过关练习(含详解)(通用版)
(通用版)高考数学(理数)一轮复习考点梳理与过关练习07《指数与指数函数》(含详解)
展开
这是一份(通用版)高考数学(理数)一轮复习考点梳理与过关练习07《指数与指数函数》(含详解),共30页。试卷主要包含了指数与指数幂的运算,指数函数的图象与性质等内容,欢迎下载使用。
考点07 指数与指数函数
(1)了解指数函数模型的实际背景.
(2)理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.
(3)理解指数函数的概念,理解指数函数的单调性,掌握指数函数图象通过的特殊点.
(4)知道指数函数是一类重要的函数模型.
一、指数与指数幂的运算
1.根式
(1)次方根的概念与性质
次
方
根
概念
一般地,如果,那么叫做的次方根,其中,.
性质
①当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.这时,的次方根用符号表示.
②当是偶数时,正数的次方根有两个,这两个数互为相反数.这时,正数的正的次方根用符号表示,负的次方根用符号表示.正的次方根与负的次方根可以合并写成.负数没有偶次方根.
③0的任何次方根都为0,记作.
(2)根式的概念与性质
根
式
概念
式子叫做根式,这里叫做根指数,叫做被开方数.
性质
①.
②当为奇数时,.
③当为偶数时,.
【注】速记口诀:
正数开方要分清,根指奇偶大不同,
根指为奇根一个,根指为偶双胞生.
负数只有奇次根,算术方根零或正,
正数若求偶次根,符号相反值相同.
负数开方要慎重,根指为奇才可行,
根指为偶无意义,零取方根仍为零.
2.实数指数幂
(1)分数指数幂
①我们规定正数的正分数指数幂的意义是.
于是,在条件下,根式都可以写成分数指数幂的形式.
②正数的负分数指数幂的意义与负整数指数幂的意义相仿,我们规定且
.
③0的正分数指数幂等于0,0的负分数指数幂没有意义.
(2)有理数指数幂
规定了分数指数幂的意义之后,指数的概念就从整数指数幂推广到了有理数指数.整数指数幂的运算性质对于有理数指数幂也同样适用,即对于任意有理数,均有下面的运算性质:
①;
②;
③.
(3)无理数指数幂
对于无理数指数幂,我们可以从有理数指数幂来理解,由于无理数是无限不循环小数,因此可以取无理数的不足近似值和过剩近似值来无限逼近它,最后我们也可得出无理数指数幂是一个确定的实数.
一般地,无理数指数幂是一个确定的实数.有理数指数幂的运算性质同样适用于无理数指数幂.
二、指数函数的图象与性质
1.指数函数的概念
一般地,函数叫做指数函数,其中是自变量,函数的定义域是.
【注】指数函数的结构特征:
(1)底数:大于零且不等于1的常数;
(2)指数:仅有自变量x;
(3)系数:ax的系数是1.
2.指数函数的图象与性质
图象
定义域
值域
奇偶性
非奇非偶函数
对称性
函数y=a−x与y=ax的图象关于y轴对称
过定点
过定点,即时,
单调性
在上是减函数
在上是增函数
函数值的变化情况
当时,;
当时,
当时,;
当时,
底数对图象的影响
指数函数在同一坐标系中的图象的相对位置与底数大小关系如下图所示,其中00,C正确.
故选C.
【名师点睛】本题主要考查对数函数的性质、指数函数的性质、幂函数的性质及绝对值的意义,渗透了逻辑推理和运算能力素养,利用特殊值排除即可判断.
4.【答案】D
【解析】当时,函数的图象过定点且单调递减,则函数的图象过定点且单调递增,函数的图象过定点且单调递减,D选项符合;
当时,函数的图象过定点且单调递增,则函数的图象过定点且单调递减,函数的图象过定点且单调递增,各选项均不符合.
综上,选D.
【名师点睛】易出现的错误:一是指数函数、对数函数的图象和性质掌握不熟练,导致判断失误;二是不能通过讨论的不同取值范围,认识函数的单调性.
5.【答案】C
【解析】是定义域为的偶函数,.
,
又在(0,+∞)上单调递减,
∴,
即.
故选C.
【名师点睛】本题主要考查函数的奇偶性、单调性,先利用函数的奇偶性化为同一区间,再利用中间量比较自变量的大小,最后根据单调性得到答案.
6.【答案】A
【解析】由可得,则,即,
所以,
.
故选A.
7.【答案】A
【解析】,所以该函数是奇函数,并且是增函数,是减函数,根据增函数−减函数=增函数,可知该函数是增函数.
故选A.
【名师点睛】本题属于基础题型,根据与的关系就可以判断出函数的奇偶性,利用函数的四则运算判断函数的单调性,如:增函数+增函数=增函数,增函数−减函数=增函数.
8.【答案】A
【解析】因为,,所以.
故选A.
9.【答案】
【解析】由题意得:当时,恒成立,即;
当时,恒成立,即;
当时,,即.
综上,x的取值范围是.
10.【答案】
【解析】由题意知在上单调递减,
又是偶函数,
则不等式可化为,则,
即,解得,
即的取值范围为.
相关试卷
这是一份(通用版)高考数学(理数)一轮复习考点梳理与过关练习42《曲线与方程》(含详解),共39页。试卷主要包含了曲线与方程的概念,坐标法求曲线方程的步骤,两曲线的交点等内容,欢迎下载使用。
这是一份(通用版)高考数学(理数)一轮复习考点梳理与过关练习55《正态分布》(含详解),共30页。试卷主要包含了正态曲线,正态分布等内容,欢迎下载使用。
这是一份(通用版)高考数学(理数)一轮复习考点梳理与过关练习40《抛物线》(含详解),共32页。试卷主要包含了抛物线的定义和标准方程,抛物线的几何性质等内容,欢迎下载使用。