|试卷下载
终身会员
搜索
    上传资料 赚现金
    北京市一零一中学2017-2018学年高一上学期期中考试数学试卷 Word版含解析
    立即下载
    加入资料篮
    北京市一零一中学2017-2018学年高一上学期期中考试数学试卷 Word版含解析01
    北京市一零一中学2017-2018学年高一上学期期中考试数学试卷 Word版含解析02
    北京市一零一中学2017-2018学年高一上学期期中考试数学试卷 Word版含解析03
    还剩8页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北京市一零一中学2017-2018学年高一上学期期中考试数学试卷 Word版含解析

    展开
    这是一份北京市一零一中学2017-2018学年高一上学期期中考试数学试卷 Word版含解析,共11页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

     

    北京一零一中2017-2018学年度第一学期数学期中考试

    一、选择题

    1.设全集=R,M={0,1,2,3},N={-1,0,1},则图中阴影部分所表示的集合是   

    A. {1}    B. {-1}    C. {0}    D. {0,1}

    【答案】B

    【解析】

    由图可知阴影部分中的元素属于,但不属于,故图中阴影部分所表示的集合为,由,得,故选B.

    2.下列函数中与具有相同图象的一个函数是(    ).

    A.     B.     C.     D.

    【答案】D

    【解析】

    对于A,与函数的定义域不同,所以函数图像不同;对于B,与函数的对应关系不同,值域不同,所以函数图象不同;对于C,与函数的定义域不同,所以函数图像不同;对于D,与函数的定义域相同,对应关系也相同所以函数图象相同,故选D.

    点睛:本题主要考查了判断两个函数是否为同一函数,属于基础题;函数的值域可由定义域和对应关系唯一确定;当且仅当定义域和对应关系均相同时才是同一函数,值得注意的是判断两个函数的对应关系是否相同,只要看对于定义域内任意一个相同的自变量的值,按照这两个对应关系算出的函数值是否相同.

    3.已知为奇函数,当时,,则上是( )

    A. 增函数,最小值为    B. 增函数,最大值为

    C. 减函数,最小值为    D. 减函数,最大值为

    【答案】C

    【解析】

    试题分析:,图像为开口向下对称轴为的抛物线,

    所以上单调递减.

    因为位奇函数图像关于原点对称,所以函数也单调递减.

    所以在,

    .故C正确.

    考点:1函数的奇偶性;2二次函数的单调性.

    4.已知函数,则的值等于(    ).

    A.     B.     C.     D.

    【答案】D

    【解析】

    【分析】

    代入函数第二段表达式,得到,再代入第二段表达式后得到,此时代入第一段就可以求得函数值.

    【详解】依题意,故选D.

    【点睛】本小题主要考查分段函数求值.第一次代入后,还是无法求得函数值,要继续再代入两次才可以.属于基础题.

    5.若一次函数f(x)=ax+b有一个零点2,则函数g(x)=bx2-ax的图象可能是   

    A.     B.

    C.     D.

    【答案】C

    【解析】

    ∵一次函数有一个零点2,∴,即可得即函数图象与轴交点的横坐标为0,对应的图象可能为C,故选C.

    6.已知函数y=(,则其单调增区间是   

    A. (-,0]    B. (-,-1]    C. [-1,+    D. [-2,+

    【答案】B

    【解析】

    函数可以看作是由两者复合而成,为减函数,的减区间为根据同增异减的法则可得函数的单调增区间为故选B.

    点睛:本题主要考查了复合函数的单调性,属于基础题;寻找函数是由哪两个初等函数复合而成是基础,充分理解同增异减的意义是关键,同时需注意当和类似于对数函数等相结合时,要保证单调区间一定在定义域内.

    7.已知函数,则函数的零点个数为(    ).

    A.     B.     C.     D.

    【答案】A

    【解析】

    【分析】

    画出函数图像,通过观察图像的交点个数,得到函数的零点个数.

    【详解】画出的图像如下图所示,由图可知,两个函数图像有个交点,故函数有两个零点.所以选A.

     【点睛】本小题主要考查分段函数图像的画法,考查函数的零点问题,将函数零点的问题转化为两个函数图像的交点来解决.

    8.定义在上的函数满足,且当时,,则等于(    ).

    A.     B.     C.     D.

    【答案】B

    【解析】

    ,令得:,又,∴当时,;令,由得:;同理可求:①,再令,由,可求得,∴,解得,令,同理反复利用,可得;…,由①②可得:有,∵,而所以有;故故选B.

    点睛本题考查抽象函数及其应用,难点在于利用,两次赋值后都反复应用,分别得到关系式两个关系式结合从而使问题解决,实际上是两边夹定理的应用,属于难题.

    二、填空题

    9.计算:__________

    【答案】

    【解析】

    原式故答案为.

    10.已知集合,则__________

    【答案】

    【解析】

    故答案为.

    11.已知函数的定义域是,则的定义域是__________

    【答案】

    【解析】

    函数的定义域为,∴解得即函数的定义域为故答案为.

    点睛:本题主要考查了抽象函数的定义域,属于基础题;已知的定义域,求的定义域,其解法是:若的定义域为,则,从中解得的取值范围即为的定义域.

    12.函数的值域为,则实数a的取值范围是______

    【答案】.

    【解析】

    函数的值域为解得则实数a的取值范围是,故答案为.

    13.已知f(x)是定义在R上的偶函数,且f(x+4)=f(x-2).若当x[-3,0]时,f(x)=6x,则f(919)=________.

    【答案】6

    【解析】

    【分析】

    先求函数周期,再根据周期以及偶函数性质化简,再代入求值.

    【详解】f(x+4)=f(x-2)可知,是周期函数,且,所以 .

    【点睛】本题考查函数周期及其应用,考查基本求解能力.

    14.某食品的保鲜时间t(单位:小时)与储藏温度x(单位:)满足函数关系且该食品在4℃的保鲜时间是16小时.

    已知甲在某日上午10时购买了该食品,并将其遗放在室外,且此日的室外温度随时间变化如图所示.给出以下四个结论:

    ①该食品在6℃的保鲜时间是8小时;

    ②当x∈[﹣6,6]时,该食品的保鲜时间t随着x增大而逐渐减少;

    ③到了此日13时,甲所购买的食品还在保鲜时间内;

    ④到了此日14时,甲所购买的食品已然过了保鲜时间.

    其中,所有正确结论的序号是            

    【答案】①④

    【解析】

    试题分析:食品的保鲜时间t(单位:小时)与储藏温度x(单位:)满足函数关系且该食品在4℃的保鲜时间是16小时.

    ∴24k+6=16,即4k+6=4,解得:k=﹣

    x=6时,t=8,故该食品在6℃的保鲜时间是8小时,正确;

    x∈[﹣60]时,保鲜时间恒为64小时,当x∈06]时,该食品的保鲜时间t随看x增大而逐渐减少,故错误;

    到了此日10时,温度超过8度,此时保鲜时间不超过4小时,故到13时,甲所购买的食品不在保鲜时间内,故错误;

    到了此日14时,甲所购买的食品已然过了保鲜时间,故正确,

    故正确的结论的序号为:①④

    故答案为:①④

    考点:命题的真假判断与应用.

    三、解答题

    15.已知集合,且,求实数,,的值及集合

    【答案】

    【解析】

    试题分析:由,所以,代入方程可得和集合A,再由,可得集合B,运用韦达定理即可得到所求,的值.

    试题解析:因为,所以,解得;又,所以,所以解得,所以.

    16.已知是定义在上的奇函数.

    )若,求的值.

    )若是函数的一个零点,求函数在区间上的值域.

    【答案】(1)1;(2)

    【解析】

    试题分析:(1)由奇函数的定义可得,即可解出的值,将代入解析式即可得到的值;(2)将代入可得的值,化简可得函数,由的单调性可得函数的单调性,故而可得函数的值域.

    试题解析:(1)由题意,,所以,所以 因为,所以=3,所以

    (2)因为是函数的一个零点,所以

    所以 因为函数在区间上都是单调递减,所以函数在区间上单调递减,所以在区间上,所以函数在区间上的值域为.

    17.已知二次函数满足,其图象过点,且与轴有唯一交点.

    )求的解析式.

    )设函数,求上的最小值

    【答案】(1);(2)

    【解析】

    试题分析:(1)利用待定系数法设,依题意过点可得,由对称轴可得,由图象与轴有唯一交点零点可得,解出方程组可得函数解析式;(2)结合(1)可得函数的对称轴为,利用分类讨论思想分为三种情形,得到函数单调性,故可得其最值.

    试题解析:(1)设二次函数的解析式为因为,所以函数对称轴为

    因为图象过点,所以,因为函数的图象与轴有唯一交点,所以所以,所以.

    (2),函数图象对称轴为,且开口向上,

    时,即时,函数上单调递增,所以

    时,即时,上单调递减,在上单调递增,所以;当时,函数上单调递减,

    所以,所以h(a)=

    点睛:本题主要考查了二次函数解析式的求法以及含有参数的二次函数最值的求法,充分体现了分类讨论思想在函数中的应用,属于中档题;利用待定系数法求二次函数解析式,主要是根据意义列出方程组,解出方程组即可;对于二次函数中的“轴动区间定问题”,主要是将函数的对称轴与所给区间的端点进行讨论.

    18.函数是定义在上的奇函数,且

    )确定函数的解析式.

    )判断并用定义证明上的单调性.

    )若,求实数的所有可能的取值.

    【答案】(1);(2)增函数;(3)0

    【解析】

    试题分析:(1)根据条件可得代入解出方程组即可得函数解析式;(2)根据函数单调性的定义取值、作差、化简、下结论等步骤即可判断并证明的单调性;(3)根据单调性与奇偶性可得不等式组,解出不等式组即可.

    试题解析:(1)根据题意,为定义在上的奇函数,则解得所以.

    (2)任取,不妨设y -=因为所以,即所以上是增函数;

    (3)上的奇函数,且由(2)知为增函数,则,所以解得.

    19.已知函数在区间上的最大值为,最小值为,记

    )求实数的值.

    )若不等式成立,求实数的取值范围.

    )定义在上的函数,设将区间任意划分成个小区间,如果存在一个常数,使得和式恒成立,则称函数为在上的有界变差函数.试判断函数是否在上的有界变差函数?若是,求的最小值;若不是,请说明理由.

    【答案】(1);(2);(3)10

    【解析】

    试题分析:(1)由已知中在区间的最大值为9,最小值为1,结合函数的单调性及最值,我们易构造出关于的方程组,解得的值;(2)由(1)参数的值,代入可得函数解析式,根据二次函数的图象和性质,可将问题转化为解出不等式得到的取值范围;(3)根据有界变差函数的定义,我们先将区间进行划分,分成两个区间进行分别判断,进而判断是否恒成立,从而求出结论.

    试题解析:(1),因为,所以在区间上是增函数,故解得

    (2)由已知可得为偶函数,所以不等式可化为,解得,即实数的取值范围是.

    (3)函数上的有界变差函数。

    因为函数上单调递减,在上单调递增,

    且对任意划分

    不妨设

    所以有

    所以

    时,

    时,

    综上,存在常数使得恒成立,所以的最小值为10。


     

     

     

    相关试卷

    2022-2023学年北京市海淀区北京一零一中学高一上学期期中考试数学试题(解析版): 这是一份2022-2023学年北京市海淀区北京一零一中学高一上学期期中考试数学试题(解析版),共17页。

    2023北京市一零一中学高二上学期期中考试数学试题含解析: 这是一份2023北京市一零一中学高二上学期期中考试数学试题含解析,文件包含北京市海淀区北京第一零一中学2022-2023学年高二上学期期中考试数学试题解析版docx、北京市海淀区北京第一零一中学2022-2023学年高二上学期期中考试数学试题无答案docx等2份试卷配套教学资源,其中试卷共24页, 欢迎下载使用。

    宁夏长庆高级中学2017-2018学年高一上学期期中考试数学试卷 Word版含答案: 这是一份宁夏长庆高级中学2017-2018学年高一上学期期中考试数学试卷 Word版含答案,共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map