人教版九上 第24章 24.1 圆相关的性质 测试卷C卷(原卷+答案解析)
展开24.1 圆相关的性质 同步测试卷C卷
一、单选题(30分)
1.如图,的半径为,圆心的坐标为,是上的任意一点,,且、与轴分别交于、两点若点、关于原点对称,则长的最小值为( )
A. B. C. D.
2.已知⊙O的直径CD=100cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=96cm,则AC的长为( )
A.36cm或64cm B.60cm或80cm C.80cm D.60cm
3.如图,在半圆中,直径,是半圆上一点,将弧沿弦折叠交于,点是弧的中点.连接,则的最小值为( )
A. B. C. D.
4.如图,中,,,.点为内一点,且满足.当的长度最小时,的面积是( )
A.3 B. C. D.
5.如图,AB为⊙O的直径,点D是弧AC的中点,过点D作DE⊥AB于点E,延长DE交⊙OO于点F,若AC=12,AE=3,则⊙O的直径长为( )
A.10 B.13 C.15 D.16
6.如图,点D在半圆O上,半径OB=,AD=10,点C在弧BD上移动,连接AC,H是AC上一点,∠DHC=90°,连接BH,点C在移动的过程中,BH的最小值是( )
A.6 B.7 C.8 D.9
7.如图,四边形为矩形,,.点P是线段上一动点,点M为线段上一点.,则的最小值为( )
A. B. C. D.
8.如图,是的直径,垂直于弦于点,的延长线交于点.若,,则的长是( )
A.1 B. C.2 D.4
9.如图,AB,CD是的弦,延长AB,CD相交于点P.已知,,则的度数是( )
A.30° B.25° C.20° D.10°
10.如图,线段是半圆O的直径。分别以点A和点O为圆心,大于的长为半径作弧,两弧交于M,N两点,作直线,交半圆O于点C,交于点E,连接,,若,则的长是( )
A. B.4 C.6 D.
.
二、填空题(24分)
11.如图,在平面直角坐标系中,点的坐标为,点在轴正半轴上,以点为圆心,长为半径作弧,交轴正半轴于点,则点的坐标为__________.
12.如图,∠DCE是⊙O内接四边形ABCD的一个外角,若∠DCE=72°,那么∠BOD的度数为 _____.
13.如图,在中,AB是的弦,的半径为3cm,C为上一点,,则AB的长为________cm.
14.如图,在△ABC中,,,,,则AD的长的最大值为______.
15.如图,正方形的边长为10,点G是边的中点,点E是边上一动点,连接,将沿翻折得到,连接.当最小时,的长是_____________.
16.如图,在半径为3的中,B是劣弧AC的中点,连接AB并延长到D,使,连接AC、BC、CD,如果,那么CD等于______.
三、解答题(66分)
17.(6分)石拱桥是我国古代人民勤劳和智慧的结晶(如图1),隋代建造的赵州桥距今约有1400年历史,是我国古代石拱桥的代表.如图2是根据某石拱桥的实物图画出的几何图形,桥的主桥拱是圆弧形,表示为.桥的跨度(弧所对的弦长),设所在圆的圆心为,半径,垂足为.拱高(弧的中点到弦的距离).连接.
(1)直接判断与的数量关系;
(2)求这座石拱桥主桥拱的半径(精确到).
18.(10分)证明:垂直于弦的直径平分弦以及弦所对的两条弧.
19.(10分)如图,在⊙O中,半径OC垂直弦AB于D,点E在⊙O上,∠E=22.5°,AB=2.求半径OB的长.
20.(12分)问题探究
(1)在中,,分别是与的平分线.
①若,,如图,试证明;
②将①中的条件“”去掉,其他条件不变,如图,问①中的结论是否成立?并说明理由.
迁移运用
(2)若四边形是圆的内接四边形,且,,如图,试探究线段,,之间的等量关系,并证明.
21.(12分)如图,在⊙O中,弦AC与弦BD交于点P,AC=BD.
(1)求证AP=BP;
(2)连接AB,若AB=8,BP=5,DP=3,求⊙O的半径.
22.(16分)几何模型:
条件:如图1,A、B是直线l同侧的两个定点.
问题:在直线l上确定一点P,使的值最小,
方法:作点B关于直线l的对称点,连接交l于点P,则的值最小.
直接应用:
(1)如图2,正方形ABCD的边长为8,M在DC上,且,N是AC上一动点,则的最小值为______.
变式练习:
(2)如图3,点A是半圆上(半径为1)的三等分点,B是的中点,P是直径MN上一动点,求的最小值.
深化拓展:
(3)如图4,在锐角中,,,的平分线交BC于点D,M、N分别是AD和AB上的动点,求的最小值.
(4)如图5,在四边形ABCD的对角线AC上找一点P,使.(要求:保留作图痕迹,并简述作法.)