福建省龙岩第一中学2022-2023学年高三上学期第一次月考试题数学(Word版附答案)
展开龙岩一中2023届高三上学期第一次月考
数学试题
考试时间:120分钟 试卷满分:150分
第Ⅰ卷(选择题共60分)
一、单项选择题:本大题共 8 小题,每小题 5分,共 40分,在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合,,则( )
A.B. C. D.
2.已知a=,b=,c=,则a,b,c的大小关系为( )
A.a<b<c B.a<c<b C.b<a<c D.b<c<a
3.下列命题中,错误的命题有( )
A.函数与不是同一个函数
B.命题“,”的否定为“,”
C.设函数,则在上单调递增
D.设,则 “”是“”的必要不充分条件
4.经研究表明,大部分注射药物的血药浓度(单位:)随时间t(单位:h)的变化规律可近似表示为,其中表示第一次静脉注射后人体内的初始血药浓度,k表示该药物在人体内的消除速率常数.已知某麻醉药的消除速率常数(单位:),某患者第一次静脉注射该麻醉药后即进入麻醉状态,测得其血药浓度为,当患者清醒时测得其血药浓度为,则该患者的麻醉时间约为()( )
A.0.8B.3.5 C.2.2 D.3.2
5.设奇函数在上是增函数,且,则不等式的解集为( )
A. B.
C.D.
6.函数的图象大致为( )
A. B.
C. D.
7.已知函数有唯一零点,则( )
A. B. C. D.1
8.已知定义在上的函数满足:,,当时,,则( )
A. B.C.D.
二、多选题:本题共 4小题,每小题 5分,共 20分.在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得 5分,选对但不全的得 2分,有选错的得 0分.
9.若,则下列结论中正确的是( )
A. B. C. D.
10.关于函数说法正确的是( )
A.定义域为 B.图象关于轴对称
C.图象关于原点对称 D.在内单调递增
11.已知函数为上的奇函数,为偶函数,下列说法正确的有( )
A.图象关于 (-1,0)对称 B.
C.的最小正周期为4 D.对任意都有
12.若实数x,y满足,,,则( )
A.且B.m的最大值为C.n的最小值为7 D.
第Ⅱ卷(非选择题共90分)
三、填空题:本大题共 4题,每小题 5分,共 20分, 其中第15题第一空2分,第二空3分.
13.已知集合,则____________.
14.若函数的定义域为,则的定义域为____.
15.已知正实数a,b满足,则的最小值为__________.
16.已知函数,若存在互不相等的实数,,,使得,则(1)实数的取值范围为_________;(2)的取值范围是_________.
四、解答题:本大题共 6小题,共 70分,解答应写出必要的文字说明、证明过程或演算步骤.
17.(本题满分10分)设函数的定义域为,集合.
(1)求集合;
(2)若:,:,且是的必要不充分条件,求实数的取值范围.
18.(本题满分12分)已知函数,.
(1)当时,求函数的最小值;
(2)当时,若对任意都有成立,求实数的取值范围.
19.(本题满分12分)已知奇函数的定义域为
(1)求实数的值;
(2)当时,恒成立,求的取值范围.
20.(本题满分12分)第四届中国国际进口博览会于2021年11月5日至10日在上海举行.本届进博会有4000多项新产品、新技术、新服务.某跨国公司带来了高端空调模型参展,通过展会调研,中国甲企业计划在2022年与该跨国公司合资生产此款空调.生产此款空调预计全年需投入固定成本260万元,生产x千台空调,需另投入资金R万元,且.经测算,当生产10千台空调时需另投入的资金R=4000万元.现每台空调售价为0.9万元时,当年内生产的空调当年能全部销售完.
(1)求2022年该企业年利润W(万元)关于年产量x(千台)的函数关系式;
(2)2022年产量为多少时,该企业所获年利润最大?最大年利润为多少?注:利润=销售额-成本.
21. (本题满分12分)如图,在五面体中,四边形为矩形,为等边三角形,且平面平面,和平面所成的角为45°,且点在平面上的射影落在四边形的中心,且.
(1)证明:平面;
(2)求平面与平面所成角(锐角)的余弦值.
22.(本题满分12分)已知有两个极值点,
(1)求实数的取值范围;
(2)证明:.
龙岩一中2023届高三上学期第一次月考数学答案
1-8:C A C D B A C B 9.ABD 10.ACD 11.BD 12.ABD
17.(1)要使得函数有意义,只需要
解得,所以集合.……4
(2)因为是的必要不充分条件,所以,……5
当时,,解得(舍去)…….6
当时,解得,
综上可知,实数的取值范围是.……..10
18. (1)解:由函数,得的定义域为,…..1
当时,,,…….2
令,解得;令,解得,
所以函数在单调递减,在单调递增,
所以当时,取得最小值,即.………6
(2)解:令,
因为对于任意都有,只须在上恒成立,
又由,
因为,
所以,,即
所以在上单调递增,所以,解得,
所以当时,对任意都有成立.……..12
19.(1)因为函数是奇函数,所以,即,
即,即,
整理得,所以,即,………4
则,因为定义域为关于原点对称,所以b=3;……..6
(2)因为,所以,又当时,恒成立,所以,时恒成立,令,则,时恒成立,而,当且仅当,即时,等号成立,所以,即的取值范围是.……..12
20.(1)由题意知,当时,,所以a=300.当时,;当时,.所以,…………..6
(2)当时,,所以当时,W有最大值,最大值为8740;当时,,当且仅当,即x=100时,W有最大值,最大值为8990.因为,所以当2022年产量为100千台时,该企业的年利润最大,最大年利润为8990万元.……….12
21. (1)如图所示,连接,取的中点分别为,
再连接,由正方形的性质,可得为四边形的中心,
因为点在平面上的射影落在四边形的中心,所以平面,
设,因为和平面所成的角为45°,所以,
因为,所以,
又因为平面平面,平面平面,,
所以平面,,则,,
所以四边形是平行四边形,所以.
因为平面,平面,
所以平面;……….6
(2)在平面中,作,
如图,以为坐标原点,所在直线分别为轴建系,
则,
又因为平面平面,所以是平面的一个法向量.
设平面的法向量为,
因为,所以,
令,则解得,所以平面的法向量为.
记平面与平面所成的角为,可得,
所以平面与平面所成角(锐角)的余弦值为……………12
22.(1)由题意,的定义域为,,
因为有两个极值点,
所以方程即在上有两不等实根,
即函数在上有两不同零点,
因此只需,解得,
即实数的取值范围是;…………….5
(2)由(1)知,,,,
所以
,
因此要证,即证,
即证,
构造函数,,
则,
又在上显然恒成立,
所以在上单调递减,
又,,
由函数零点存在性定理可得,,使得,即,即;
所以当时,,则单调递增;
当时,,则单调递减;
所以,
又在上显然单调递增,
所以,
所以,即,
故………………12
福建省龙岩第一中学2023-2024学年高三上学期第三次月考数学试题(Word版附解析): 这是一份福建省龙岩第一中学2023-2024学年高三上学期第三次月考数学试题(Word版附解析),共14页。试卷主要包含了单项选择题,多项选择题,填空题,解答题等内容,欢迎下载使用。
福建省龙岩第一中学2022-2023学年高一数学上学期第一次月考试卷(Word版附答案): 这是一份福建省龙岩第一中学2022-2023学年高一数学上学期第一次月考试卷(Word版附答案),共8页。试卷主要包含了若,则下列结论一定成立的是, “”的一个必要不充分条件是,已知,,且,则的最大值为,已知函数,下列四个命题中的假命题为等内容,欢迎下载使用。
福建省龙岩市第一中学2022-2023学年高二数学上学期第三次月考试题(Word版附答案): 这是一份福建省龙岩市第一中学2022-2023学年高二数学上学期第三次月考试题(Word版附答案),共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。