初中数学青岛版九年级上册3.4 直线与圆的位置关系精品一课一练
展开一、选择题
1.如图,⊙O的半径OC=5 cm,直线l⊥OC,垂足为H,且l交⊙O于A,B两点,AB=8 cm,若l沿OC所在直线平移后与⊙O相切,则平移的距离是( )
A.1 cm B.2 cm C.8 cm D.2 cm或8 cm
2.直线l与半径为r的⊙O相交,且点O到直线l的距离为6,则r的取值范围是( )
A.r<6 B.r=6 C.r>6 D.r≥6
3.在平面直角坐标系中,以点(3,2)为圆心,3为半径的圆,一定( )
A.与x轴相切,与y轴相切
B.与x轴相切,与y轴相交
C.与x轴相交,与y轴相切
D.与x轴相交,与y轴相交
4.如图,两个圆的圆心都是点O,AB是大圆的直径,大圆的弦BC所在直线与小圆相切于点D.则下列结论不一定成立的是( )
A.BD=CD B.AC⊥BC C.AB=2AC D.AC=2OD
5.如图,△ABC中,AB=3,AC=4,BC=5,D、E分别是AC、AB的中点,则以DE为直径的圆与BC的位置关系是( )
A.相切 B.相交 C.相离 D.无法确定
6.已知∠BAC=45°,一动点O在射线AB上运动(点O与点A不重合),设OA=x,如果半径为1的⊙O与射线AC有公共点,那么x的取值范围是( )
A.0<x≤1 B.1≤x<eq \r(2) C.0<x≤eq \r(2) D.x>eq \r(2)
7.已知⊙O的半径为4,点O到直线m的距离为3,则直线m与⊙O公共点的个数为( )
A.0个 B.1个 C.2个 D.3个
8.如图,已知点A,B在半径为1的⊙O上,∠AOB=60°,延长OB至点C,过点C作直线OA的垂线,记为l,则下列说法正确的是( )
A.当BC=0.5时,l与⊙O相离
B.当BC=2时,l与⊙O相切
C.当BC=1时,l与⊙O相交
D.当BC≠1时,l与⊙O不相切
9.如图,已知⊙O上三点A,B,C,半径OC=1,∠ABC=30°,切线PA交OC延长线于点P,则PA的长为( )
A.2 B. eq \r(3) C. eq \r(2) D. eq \f(1,2)
10.以坐标原点O为圆心,作半径为2的圆,若直线y=-x+b与⊙O相交,则b的取值范围是( )
A.0≤b<2eq \r(2) B.-2eq \r(2)≤b≤2eq \r(2) C.-2eq \r(3)二、填空题
11.在平面直角坐标系中,⊙C的圆心为C(a,0),半径长为2,若y轴与⊙C相离,则a的取值范围为 .
12.在矩形ABCD中,AB=6,BC=4,⊙O是以AB为直径的圆,则直线DC与⊙O的位置关系是 .
13.如图,已知Rt△ABC的斜边AB=8,AC=4.以点C为圆心作圆,当⊙C与边AB只有一个交点时,则⊙C的半径的取值范围是 .
14.如图,在矩形ABCD中,AB=6,BC=4,⊙O是以AB为直径的圆,则直线DC与⊙O的位置关系是________.
15.在Rt△ABC中,∠C=90°,AC=5,BC=12,若以点C为圆心,r为半径所作的圆与斜边AB只有一个公共点,则r的取值范围是_____________
16.如图,给定一个半径长为2的圆,圆心O到水平直线l的距离为d,即OM=d.我们把圆上到直线l的距离等于1的点的个数记为m.如d=0时,l为经过圆心O的一条直线,此时圆上有四个到直线l的距离等于1的点,即m=4,由此可知:
(1)当d=3时,m= ;
(2)当m=2时,d的取值范围是 .
三、解答题
17.如图所示,已知Rt△ABC的斜边AB=8 cm,AC=4 cm.
(1)以点C为圆心作圆,当半径为多长时,直线AB与⊙C相切?
(2)分别以点C为圆心,2 cm和4 cm为半径作两个圆,这两个圆与直线AB分别有怎样的位置关系?
18.如图,AB为⊙O直径,E为⊙O上一点,∠EAB的平分线AC交⊙O于C点,过C点作CD⊥AE的延长线于D点,直线CD与射线AB交于P点.
(1)判断直线DP与⊙O的位置关系,并说明理由;
(2)若DC=4,⊙O的半径为5,求PB的长.
19.如图,已知∠APB=30°,OP=3cm,⊙O的半径为1cm,若圆心O沿着BP的方向在直线BP上移动.
(1)当圆心O移动的距离为1cm时,则⊙O与直线PA的位置关系是什么?
(2)若圆心O的移动距离是d,当⊙O与直线PA相交时,则d的取值范围是什么?
20.如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,作ED⊥EB交AB于点D,⊙O是△BED的外接圆.
(1)求证:AC是⊙O的切线;
(2)已知⊙O的半径为2.5,BE=4,求BC,AD的长.
21.如图,在△ABC中,∠C=90°,∠ABC的平分线交AC于点E,过点E作BE的垂线交AB于点F,⊙O是△BEF的外接圆.
(1)求证:AC是⊙O的切线;
(2)过点E作EH⊥AB,垂足为H,求证:CD=HF;
(3)已知:CD=1,EH=3,求AF的长.
参考答案
1.D.
2.C.
3.C.
4.C.
5.B.
6.C.
7.C.
8.D.
9.B.
10.D
11.答案为:a<﹣2或a>2.
12.答案为:相离.
13.答案为:r=2eq \r(3)或4<r≤4eq \r(3).
14.答案为:相离
15.答案为:5<r≤12或r=eq \f(60,13);
16.答案为:(1)1;(2)1<d<3.
17.解:(1)如图所示,过点C作CD⊥AB,垂足为D.
在Rt△ABC中,BC=eq \r(82-42)=4 eq \r(3)(cm),
所以CD=eq \f(4 \r(3)×4,8)=2 eq \r(3)(cm).
因此,当半径为2 eq \r(3) cm时,直线AB与⊙C相切.
(2)由(1)可知,圆心C到直线AB的距离d=2 eq \r(3) cm,所以
当r=2 cm时,d>r,⊙C与直线AB相离;
当r=4 cm时,d<r,⊙C与直线AB相交.
18.解:(1)直线DP与⊙O相切.
理由如下:连接OC,如图,
∵AC是∠EAB的平分线,
∴∠EAC=∠OAC
∵OA=OC,
∴∠ACO=∠OAC,
∴∠ACO=∠DAC,
∴OC∥AD,
∵CD⊥AE,
∴OC⊥CD,
∴DP是⊙O的切线;
(2)作CH⊥AB于H,如图,
∵AC是∠EAB的平分线,CD⊥AD,CH⊥AB,
∴CH=CD=4,
∴OH==3,
∵OC⊥CP,
∴∠OCP=∠CHO=90°,
而∠COP=∠POC,
∴△OCH∽△OPC,
∴OC:OP=OH:OC,
∴OP==,
∴PB=OP﹣OB=﹣5=.
19.解:(1)如图,当点O向左移动1cm时,PO′=PO﹣O′O=3﹣1=2cm,
作O′C⊥PA于C,
∵∠P=30度,
∴O′C=PO′=1cm,
∵圆的半径为1cm,
∴⊙O与直线PA的位置关系是相切;
(2)如图:当点O由O′向右继续移动时,PA与圆相交,
当移动到C″时,相切,
此时C″P=PO′=2,
∵OP=3,
∴OO'=1,OC''=OP+C''P=3+2=5
∴点O移动的距离d的范围满足1cm<d<5cm时相交,
故答案为::1cm<d<5cm.
20.解:
21.证明:
初中数学青岛版九年级上册3.4 直线与圆的位置关系复习练习题: 这是一份初中数学青岛版九年级上册3.4 直线与圆的位置关系复习练习题,共7页。试卷主要包含了单选题,填空题等内容,欢迎下载使用。
苏科版九年级上册3.4 方差精品练习: 这是一份苏科版九年级上册3.4 方差精品练习,共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
初中苏科版2.5 直线与圆的位置关系精品课时作业: 这是一份初中苏科版2.5 直线与圆的位置关系精品课时作业,共11页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。