年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    江苏省南京市栖霞区重点名校2022年中考数学适应性模拟试题含解析

    江苏省南京市栖霞区重点名校2022年中考数学适应性模拟试题含解析第1页
    江苏省南京市栖霞区重点名校2022年中考数学适应性模拟试题含解析第2页
    江苏省南京市栖霞区重点名校2022年中考数学适应性模拟试题含解析第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省南京市栖霞区重点名校2022年中考数学适应性模拟试题含解析

    展开

    这是一份江苏省南京市栖霞区重点名校2022年中考数学适应性模拟试题含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.将抛物线y=x2﹣x+1先向左平移2个单位长度,再向上平移3个单位长度,则所得抛物线的表达式为(  )
    A.y=x2+3x+6 B.y=x2+3x C.y=x2﹣5x+10 D.y=x2﹣5x+4
    2.如图,数轴上的三点所表示的数分别为,其中,如果|那么该数轴的原点的位置应该在( )

    A.点的左边 B.点与点之间 C.点与点之间 D.点的右边
    3.如图,一把带有60°角的三角尺放在两条平行线间,已知量得平行线间的距离为12cm,三角尺最短边和平行线成45°角,则三角尺斜边的长度为(  )

    A.12cm B.12cm C.24cm D.24cm
    4.如图,某同学不小心把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带( )

    A.带③去 B.带②去 C.带①去 D.带①②去
    5.□ABCD中,E、F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是( )
    A.BE=DF B.AE=CF C.AF//CE D.∠BAE=∠DCF
    6.图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中正方形顶点A,B在围成的正方体中的距离是(  )

    A.0 B.1 C. D.
    7.我国第一艘航母“辽宁舰”最大排水量为67500吨,用科学记数法表示这个数字是
    A.6.75×103吨 B.67.5×103吨 C.6.75×104吨 D.6.75×105吨
    8.被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积约为250000m2,则250000用科学记数法表示为( )
    A.25×104m2 B.0.25×106m2 C.2.5×105m2 D.2.5×106m2
    9.如图,在中,,,,将折叠,使点与的中点重合,折痕为,则线段的长为( )

    A. B. C. D.
    10.如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E,F分别是AC,BC的中点,直线EF与⊙O交于G,H两点,若⊙O的半径为6,则GE+FH的最大值为(  )

    A.6 B.9 C.10 D.12
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.分式方程+=1的解为________.
    12.在平面直角坐标系xOy中,将一块含有45°角的直角三角板如图放置,直角顶点C的坐标为(1,0),顶点A的坐标(0,2),顶点B恰好落在第一象限的双曲线上,现将直角三角板沿x轴正方向平移,当顶点A恰好落在该双曲线上时停止运动,则此时点C的对应点C′的坐标为_____.

    13.如图,在边长为9的正三角形ABC中,BD=3,∠ADE=60°,则AE的长为    .

    14.已知n>1,M=,N=,P=,则M、N、P的大小关系为 .
    15.若分式的值为正数,则x的取值范围_____.
    16.如图所示,在四边形ABCD中,AD⊥AB,∠C=110°,它的一个外角∠ADE=60°,则∠B的大小是_____.

    三、解答题(共8题,共72分)
    17.(8分)如图,已知函数(x>0)的图象经过点A、B,点B的坐标为(2,2).过点A作AC⊥x轴,垂足为C,过点B作BD⊥y轴,垂足为D,AC与BD交于点F.一次函数y=ax+b的图象经过点A、D,与x轴的负半轴交于点E.
    若AC=OD,求a、b的值;若BC∥AE,求BC的长.
    18.(8分)如图所示,AB是⊙O的直径,AE是弦,C是劣弧AE的中点,过C作CD⊥AB于点D,CD交AE于点F,过C作CG∥AE交BA的延长线于点G.求证:CG是⊙O的切线.求证:AF=CF.若sinG=0.6,CF=4,求GA的长.

    19.(8分)已知:如图,在平面直角坐标系xOy中,抛物线的图像与x轴交于点A(3,0),与y轴交于点B,顶点C在直线上,将抛物线沿射线 AC的方向平移,
    当顶点C恰好落在y轴上的点D处时,点B落在点E处.
    (1)求这个抛物线的解析式;
    (2)求平移过程中线段BC所扫过的面积;
    (3)已知点F在x轴上,点G在坐标平面内,且以点 C、E、F、G 为顶点的四边形是矩形,求点F的坐标.

    20.(8分)如图,在△ABC中,∠ABC=90°,以AB为直径的⊙O与AC边交于点D,过点D的直线交BC边于点E,∠BDE=∠A.
    判断直线DE与⊙O的位置关系,并说明理由.若⊙O的半径R=5,tanA=,求线段CD的长.
    21.(8分)已知,抛物线(为常数).

    (1)抛物线的顶点坐标为( , )(用含的代数式表示);
    (2)若抛物线经过点且与图象交点的纵坐标为3,请在图1中画出抛物线的简图,并求的函数表达式;
    (3)如图2,规矩的四条边分别平行于坐标轴,,若抛物线经过两点,且矩形在其对称轴的左侧,则对角线的最小值是 .
    22.(10分)先化简,再求值:()÷,其中a=+1.
    23.(12分)如图,AD是△ABC的中线,AD=12,AB=13,BC=10,求AC长.

    24.抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B.求此抛物线的解析式;已知点D 在第四象限的抛物线上,求点D关于直线BC对称的点D’的坐标;在(2)的条件下,连结BD,问在x轴上是否存在点P,使,若存在,请求出P点的坐标;若不存在,请说明理由.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、A
    【解析】
    先将抛物线解析式化为顶点式,左加右减的原则即可.
    【详解】

    当向左平移2个单位长度,再向上平移3个单位长度,得
    .
    故选A.
    【点睛】
    本题考查二次函数的平移;掌握平移的法则“左加右减”,二次函数的平移一定要将解析式化为顶点式进行;
    2、C
    【解析】
    根据绝对值是数轴上表示数的点到原点的距离,分别判断出点A、B、C到原点的距离的大小,从而得到原点的位置,即可得解.
    【详解】
    ∵|a|>|c|>|b|,
    ∴点A到原点的距离最大,点C其次,点B最小,
    又∵AB=BC,
    ∴原点O的位置是在点B、C之间且靠近点B的地方.
    故选:C.
    【点睛】
    此题考查了实数与数轴,理解绝对值的定义是解题的关键.
    3、D
    【解析】
    过A作AD⊥BF于D,根据45°角的三角函数值可求出AB的长度,根据含30°角的直角三角形的性质求出斜边AC的长即可.
    【详解】
    如图,过A作AD⊥BF于D,
    ∵∠ABD=45°,AD=12,
    ∴=12,
    又∵Rt△ABC中,∠C=30°,
    ∴AC=2AB=24,
    故选:D.

    【点睛】
    本题考查解直角三角形,在直角三角形中,30°角所对的直角边等于斜边的一半,熟记特殊角三角函数值是解题关键.
    4、A
    【解析】
    第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.
    【详解】
    ③中含原三角形的两角及夹边,根据ASA公理,能够唯一确定三角形.其它两个不行.
    故选:A.
    【点睛】
    此题主要考查全等三角形的运用,熟练掌握,即可解题.
    5、B
    【解析】
    【分析】根据平行线的判定方法结合已知条件逐项进行分析即可得.
    【详解】A、如图,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,
    ∵BE=DF,∴OE=OF,∴四边形AECF是平行四边形,故不符合题意;

    B、如图所示,AE=CF,不能得到四边形AECF是平行四边形,故符合题意;

    C、如图,∵四边形ABCD是平行四边形,∴OA=OC,
    ∵AF//CE,∴∠FAO=∠ECO,
    又∵∠AOF=∠COE,∴△AOF≌△COE,∴AF=CE,
    ∴AF CE,∴四边形AECF是平行四边形,故不符合题意;

    D、如图,∵四边形ABCD是平行四边形,∴AB=CD,AB//CD,
    ∴∠ABE=∠CDF,
    又∵∠BAE=∠DCF,∴△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴∠AEO=∠CFO,
    ∴AE//CF,
    ∴AE CF,∴四边形AECF是平行四边形,故不符合题意,
    故选B.

    【点睛】本题考查了平行四边形的性质与判定,熟练掌握平行四边形的判定定理与性质定理是解题的关键.
    6、C
    【解析】
    试题分析: 本题考查了勾股定理、展开图折叠成几何体、正方形的性质;熟练掌握正方形的性质和勾股定理,并能进行推理计算是解决问题的关键.由正方形的性质和勾股定理求出AB的长,即可得出结果.
    解:连接AB,如图所示:
    根据题意得:∠ACB=90°,
    由勾股定理得:AB==;
    故选C.

    考点:1.勾股定理;2.展开图折叠成几何体.
    7、C
    【解析】
    试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0).67500一共5位,从而67 500=6.75×2.故选C.
    8、C
    【解析】
    科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数.
    【详解】
    解:由科学记数法可知:250000 m2=2.5×105m2,
    故选C.
    【点睛】
    此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.
    9、C
    【解析】
    设BN=x,则由折叠的性质可得DN=AN=9-x,根据中点的定义可得BD=3,在Rt△BND中,根据勾股定理可得关于x的方程,解方程即可求解.
    【详解】
    设,则.
    由折叠的性质,得.
    因为点是的中点,
    所以.
    在中,
    由勾股定理,得,
    即,
    解得,
    故线段的长为4.
    故选C.
    【点睛】
    此题考查了折叠的性质,勾股定理,中点的定义以及方程思想,熟练掌握折叠的性质及勾股定理是解答本题的关键.
    10、B
    【解析】
    首先连接OA、OB,根据圆周角定理,求出∠AOB=2∠ACB=60°,进而判断出△AOB为等边三角形;然后根据⊙O的半径为6,可得AB=OA=OB=6,再根据三角形的中位线定理,求出EF的长度;最后判断出当弦GH是圆的直径时,它的值最大,进而求出GE+FH的最大值是多少即可.
    【详解】
    解:如图,连接OA、OB,

    ∵∠ACB=30°,
    ∴∠AOB=2∠ACB=60°,
    ∵OA=OB,
    ∴△AOB为等边三角形,
    ∵⊙O的半径为6,
    ∴AB=OA=OB=6,
    ∵点E,F分别是AC、BC的中点,
    ∴EF=AB=3,
    要求GE+FH的最大值,即求GE+FH+EF(弦GH)的最大值,
    ∵当弦GH是圆的直径时,它的最大值为:6×2=12,
    ∴GE+FH的最大值为:12﹣3=1.
    故选:B.
    【点睛】
    本题结合动点考查了圆周角定理,三角形中位线定理,有一定难度.确定GH的位置是解题的关键.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、
    【解析】
    根据解分式方程的步骤,即可解答.
    【详解】
    方程两边都乘以,得:,
    解得:,
    检验:当时,,
    所以分式方程的解为,
    故答案为.
    【点睛】
    考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解解分式方程一定注意要验根.
    12、(,0)
    【解析】
    试题解析:过点B作BD⊥x轴于点D,

    ∵∠ACO+∠BCD=90°,
    ∠OAC+∠ACO=90°,
    ∴∠OAC=∠BCD,
    在△ACO与△BCD中,

    ∴△ACO≌△BCD(AAS)
    ∴OC=BD,OA=CD,
    ∵A(0,2),C(1,0)
    ∴OD=3,BD=1,
    ∴B(3,1),
    ∴设反比例函数的解析式为y=,
    将B(3,1)代入y=,
    ∴k=3,
    ∴y=,
    ∴把y=2代入y=,
    ∴x=,
    当顶点A恰好落在该双曲线上时,
    此时点A移动了个单位长度,
    ∴C也移动了个单位长度,
    此时点C的对应点C′的坐标为(,0)
    故答案为(,0).
    13、7
    【解析】
    试题分析:∵△ABC是等边三角形,∴∠B=∠C=60°,AB=BC.
    ∴CD=BC-BD=9-3=6,;∠BAD+∠ADB=120°.
    ∵∠ADE=60°,∴∠ADB+∠EDC=120°.∴∠DAB=∠EDC.
    又∵∠B=∠C=60°,∴△ABD∽△DCE.
    ∴,即.
    ∴.
    14、M>P>N
    【解析】
    ∵n>1,
    ∴n-1>0,n>n-1,
    ∴M>1,0b; 如果a-b=0,那么a=b; 如果a-bc,那么a>b>c.
    15、x>1
    【解析】
    试题解析:由题意得:
    >0,
    ∵-6<0,
    ∴1-x<0,
    ∴x>1.
    16、40°
    【解析】
    【分析】根据外角的概念求出∠ADC的度数,再根据垂直的定义、四边形的内角和等于360°进行求解即可得.
    【详解】∵∠ADE=60°,
    ∴∠ADC=120°,
    ∵AD⊥AB,
    ∴∠DAB=90°,
    ∴∠B=360°﹣∠C﹣∠ADC﹣∠A=40°,
    故答案为40°.
    【点睛】本题考查了多边形的内角和外角,掌握四边形的内角和等于360°、外角的概念是解题的关键.

    三、解答题(共8题,共72分)
    17、(1)a=,b=2;(2)BC=.
    【解析】
    试题分析:(1)首先利用反比例函数图象上点的坐标性质得出k的值,再得出A、D点坐标,进而求出a,b的值;
    (2)设A点的坐标为:(m,),则C点的坐标为:(m,0),得出tan∠ADF=,tan∠AEC=,进而求出m的值,即可得出答案.
    试题解析:(1)∵点B(2,2)在函数y=(x>0)的图象上,
    ∴k=4,则y=,
    ∵BD⊥y轴,∴D点的坐标为:(0,2),OD=2,
    ∵AC⊥x轴,AC=OD,∴AC=3,即A点的纵坐标为:3,
    ∵点A在y=的图象上,∴A点的坐标为:(,3),
    ∵一次函数y=ax+b的图象经过点A、D,
    ∴,
    解得:,b=2;
    (2)设A点的坐标为:(m,),则C点的坐标为:(m,0),
    ∵BD∥CE,且BC∥DE,
    ∴四边形BCED为平行四边形,
    ∴CE=BD=2,
    ∵BD∥CE,∴∠ADF=∠AEC,
    ∴在Rt△AFD中,tan∠ADF=,
    在Rt△ACE中,tan∠AEC=,
    ∴=,
    解得:m=1,
    ∴C点的坐标为:(1,0),则BC=.
    考点:反比例函数与一次函数的交点问题.
    18、(1)见解析;(2)见解析;(3)AG=1.
    【解析】
    (1)利用垂径定理、平行的性质,得出OC⊥CG,得证CG是⊙O的切线.
    (2)利用直径所对圆周角为和垂直的条件得出∠2=∠B,再根据等弧所对的圆周角相等得出∠1=∠B,进而证得∠1=∠2,得证AF=CF.
    (3)根据直角三角形的性质,求出AD的长度,再利用平行的性质计算出结果.
    【详解】
    (1)证明:连结OC,如图,
    ∵C是劣弧AE的中点,
    ∴OC⊥AE,
    ∵CG∥AE,
    ∴CG⊥OC,
    ∴CG是⊙O的切线;
    (2)证明:连结AC、BC,
    ∵AB是⊙O的直径,
    ∴∠ACB=90°,
    ∴∠2+∠BCD=90°,
    而CD⊥AB,
    ∴∠B+∠BCD=90°,
    ∴∠B=∠2,
    ∵C是劣弧AE的中点,
    ∴,
    ∴∠1=∠B,
    ∴∠1=∠2,
    ∴AF=CF;
    (3)解:∵CG∥AE,
    ∴∠FAD=∠G,
    ∵sinG=0.6,
    ∴sin∠FAD==0.6,
    ∵∠CDA=90°,AF=CF=4,
    ∴DF=2.4,
    ∴AD=3.2,
    ∴CD=CF+DF=6.4,
    ∵AF∥CG,
    ∴,

    ∴DG=,
    ∴AG=DG﹣AD=1.

    【点睛】
    本题主要考查与圆有关的位置关系和圆中的计算问题,掌握切线的判定定理以及解直角三角形是解题的关键.
    19、(1)抛物线的解析式为;(2)12; (1)满足条件的点有F1(,0),F2(,0),F1(,0),F4(,0).
    【解析】
    分析:(1)根据对称轴方程求得b=﹣4a,将点A的坐标代入函数解析式求得9a+1b+1=0,联立方程组,求得系数的值即可;
    (2)抛物线在平移的过程中,线段BC所扫过的面积为平行四边形BCDE的面积,根据二次函数图象上点的坐标特征和三角形的面积得到:∴.
    (1)联结CE.分类讨论:(i)当CE为矩形的一边时,过点C作CF1⊥CE,交x轴于点F1,设点F1(a,0).在Rt△OCF1中,利用勾股定理求得a的值;
    (ii)当CE为矩形的对角线时,以点O为圆心,OC长为半径画弧分别交x轴于点F1、F4,利用圆的性质解答.
    详解:(1)∵顶点C在直线x=2上,∴,∴b=﹣4a.
    将A(1,0)代入y=ax2+bx+1,得:9a+1b+1=0,解得:a=1,b=﹣4,
    ∴抛物线的解析式为y=x2﹣4x+1.
    (2)过点C作CM⊥x轴,CN⊥y轴,垂足分别为M、N.
    ∵y=x2﹣4x+1═(x﹣2)2﹣1,∴C(2,﹣1).
    ∵CM=MA=1,∴∠MAC=45°,∴∠ODA=45°,∴OD=OA=1.
    ∵抛物线y=x2﹣4x+1与y轴交于点B,∴B(0,1),∴BD=2.
    ∵抛物线在平移的过程中,线段BC所扫过的面积为平行四边形BCDE的面积,∴.
    (1)联结CE.
    ∵四边形BCDE是平行四边形,∴点O是对角线CE与BD的交点,即 .
    (i)当CE为矩形的一边时,过点C作CF1⊥CE,交x轴于点F1,设点F1(a,0).在Rt△OCF1中,,即 a2=(a﹣2)2+5,解得: ,∴点.
    同理,得点;
    (ii)当CE为矩形的对角线时,以点O为圆心,OC长为半径画弧分别交x轴于点F1、F4,可得: ,得点、.
    综上所述:满足条件的点有),.

    点睛:本题考查了待定系数法求二次函数的解析式,二次函数图象上点的坐标特征,平行四边形的面积公式,正确的理解题意是解题的关键.
    20、(1) DE与⊙O相切; 理由见解析;(2).
    【解析】
    (1)连接OD,利用圆周角定理以及等腰三角形的性质得出OD⊥DE,进而得出答案;
    (2)得出△BCD∽△ACB,进而利用相似三角形的性质得出CD的长.
    【详解】
    解:(1)直线DE与⊙O相切.
    理由如下:连接OD.

    ∵OA=OD
    ∴∠ODA=∠A
    又∵∠BDE=∠A
    ∴∠ODA=∠BDE
    ∵AB是⊙O直径
    ∴∠ADB=90°
    即∠ODA+∠ODB=90°
    ∴∠BDE+∠ODB=90°
    ∴∠ODE=90°
    ∴OD⊥DE
    ∴DE与⊙O相切;
    (2)∵R=5,
    ∴AB=10,
    在Rt△ABC中
    ∵tanA=
    ∴BC=AB•tanA=10×,
    ∴AC=,
    ∵∠BDC=∠ABC=90°,∠BCD=∠ACB
    ∴△BCD∽△ACB

    ∴CD=.
    【点睛】
    本题考查切线的判定、勾股定理及相似三角形的判定与性质,掌握相关性质定理灵活应用是本题的解题关键.
    21、(1);(2)图象见解析,或;(3)
    【解析】
    (1)将抛物线的解析式配成顶点式,即可得出顶点坐标;
    (2)根据抛物线经过点M,用待定系数法求出抛物线的解析式,即可得出图象,然后将纵坐标3代入抛物线的解析式中,求出横坐标,然后将点再代入反比例函数的表达式中即可求出反比例函数的表示式;
    (3)设出A的坐标,表示出C,D的坐标,得到CD的长度,根据题意找到CD的最小值,因为AD的长度不变,所以当CD最小时,对角线AC最小,则答案可求.
    【详解】
    解:(1),
    抛物线的顶点的坐标为.
    故答案为:
    (2)将代入抛物线的解析式得:
    解得:,
    抛物线的解析式为.
    抛物线的大致图象如图所示:

    将代入得:

    解得:或
    抛物线与反比例函数图象的交点坐标为或.
    将代入得:,

    将代入得:,

    综上所述,反比例函数的表达式为或.
    (3)设点的坐标为,
    则点的坐标为,
    的坐标为.

    的长随的增大而减小.
    矩形在其对称轴的左侧,抛物线的对称轴为,


    当时,的长有最小值,的最小值.
    的长度不变,
    当最小时,有最小值.
    的最小值
    故答案为:.
    【点睛】
    本题主要考查二次函数,反比例函数与几何综合,掌握二次函数,反比例函数的图象与性质是解题的关键.
    22、,.
    【解析】
    根据分式的减法和除法可以化简题目中的式子,然后将a的值代入化简后的式子即可解答本题.
    【详解】
    解: ()÷
    =
    =
    =
    =,
    当a=+1时,原式==.
    【点睛】
    本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.
    23、2.
    【解析】
    根据勾股定理逆定理,证△ABD是直角三角形,得AD⊥BC,可证AD垂直平分BC,所以AB=AC.
    【详解】
    解:∵AD是△ABC的中线,且BC=10,
    ∴BD=BC=1.
    ∵12+122=22,即BD2+AD2=AB2,
    ∴△ABD是直角三角形,则AD⊥BC,
    又∵CD=BD,
    ∴AC=AB=2.
    【点睛】
    本题考核知识点:勾股定理、全等三角形、垂直平分线.解题关键点:熟记相关性质,证线段相等.
    24、(1)
    (2)(0,-1)
    (3)(1,0)(9,0)
    【解析】
    (1)将A(−1,0)、C(0,−3)两点坐标代入抛物线y=ax2+bx−3a中,列方程组求a、b的值即可;
    (2)将点D(m,−m−1)代入(1)中的抛物线解析式,求m的值,再根据对称性求点D关于直线BC对称的点D'的坐标;
    (3)分两种情形①过点C作CP∥BD,交x轴于P,则∠PCB=∠CBD,②连接BD′,过点C作CP′∥BD′,交x轴于P′,分别求出直线CP和直线CP′的解析式即可解决问题.
    【详解】
    解:(1)将A(−1,0)、C(0,−3)代入抛物线y=ax2+bx−3a中,
    得 ,
    解得
    ∴y=x2−2x−3;
    (2)将点D(m,−m−1)代入y=x2−2x−3中,得
    m2−2m−3=−m−1,
    解得m=2或−1,
    ∵点D(m,−m−1)在第四象限,
    ∴D(2,−3),
    ∵直线BC解析式为y=x−3,
    ∴∠BCD=∠BCO=45°,CD′=CD=2,OD′=3−2=1,
    ∴点D关于直线BC对称的点D'(0,−1);
    (3)存在.满足条件的点P有两个.
    ①过点C作CP∥BD,交x轴于P,则∠PCB=∠CBD,
    ∵直线BD解析式为y=3x−9,
    ∵直线CP过点C,
    ∴直线CP的解析式为y=3x−3,
    ∴点P坐标(1,0),
    ②连接BD′,过点C作CP′∥BD′,交x轴于P′,
    ∴∠P′CB=∠D′BC,
    根据对称性可知∠D′BC=∠CBD,
    ∴∠P′CB=∠CBD,
    ∵直线BD′的解析式为
    ∵直线CP′过点C,
    ∴直线CP′解析式为,
    ∴P′坐标为(9,0),

    综上所述,满足条件的点P坐标为(1,0)或(9,0).
    【点睛】
    本题考查了二次函数的综合运用.关键是由已知条件求抛物线解析式,根据抛物线的对称性,直线BC的特殊性求点的坐标,学会分类讨论,不能漏解.

    相关试卷

    江苏省南京市栖霞区2021-2022学年中考适应性考试数学试题含解析:

    这是一份江苏省南京市栖霞区2021-2022学年中考适应性考试数学试题含解析,共21页。试卷主要包含了下列因式分解正确的是等内容,欢迎下载使用。

    江苏省南京市六区重点名校2022年中考数学模拟试题含解析:

    这是一份江苏省南京市六区重点名校2022年中考数学模拟试题含解析,共18页。试卷主要包含了考生要认真填写考场号和座位序号,已知点 A,下列因式分解正确的是,以下各图中,能确定的是等内容,欢迎下载使用。

    南京市鼓楼区重点名校2022年中考数学适应性模拟试题含解析:

    这是一份南京市鼓楼区重点名校2022年中考数学适应性模拟试题含解析,共18页。试卷主要包含了将一副三角板,函数y=中自变量x的取值范围是,八边形的内角和为等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map