江苏省苏州市区重点名校2021-2022学年中考数学押题卷含解析
展开
这是一份江苏省苏州市区重点名校2021-2022学年中考数学押题卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.如图,从一块圆形纸片上剪出一个圆心角为90°的扇形ABC,使点A、B、C在圆周上, 将剪下的扇形作为一个圆锥侧面,如果圆锥的高为,则这块圆形纸片的直径为( )
A.12cm B.20cm C.24cm D.28cm
2.若二次函数的图象与轴有两个交点,坐标分别是(x1,0),(x2,0),且. 图象上有一点在轴下方,则下列判断正确的是( )
A. B. C. D.
3.在一个口袋中有4个完全相同的小球,把它们分别标号为 1,2,3,4,随机地摸出一个小球然后放回,再随机地摸出一个小球.则两次摸出的小球的标号的和等于6的概率为( )
A. B. C. D.
4.有两把不同的锁和三把钥匙,其中两把钥匙恰好分别能打开这两把锁,第三把钥匙不能打开这两把锁,任意取出一把钥匙去开任意的一把锁,一次打开锁的概率是( )
A. B. C. D.
5.已知一元二次方程有一个根为2,则另一根为
A.2 B.3 C.4 D.8
6.下列四个数表示在数轴上,它们对应的点中,离原点最远的是( )
A.﹣2 B.﹣1 C.0 D.1
7.一个布袋内只装有1个黑球和2个白球,这些球除颜色不同外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是( )
A. B. C. D.
8.如图,数轴上有A,B,C,D四个点,其中绝对值最小的数对应的点是 ( )
A.点A B.点B C.点C D.点D
9.根据中国铁路总公司3月13日披露,2018年铁路春运自2月1日起至3月12日止,为期40天全国铁路累计发送旅客3.82亿人次.3.82亿用科学记数法可以表示为( )
A.3.82×107 B.3.82×108 C.3.82×109 D.0.382×1010
10.如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴,点C在函数y=(x>0)的图象上,若AB=2,则k的值为( )
A.4 B.2 C.2 D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,在△ABC中,BE平分∠ABC,DE∥BC,如果DE=2AD,AE=3,那么EC=_____.
12.若x2+kx+81是完全平方式,则k的值应是________.
13.如图,在两个同心圆中,三条直径把大、小圆都分成相等的六个部分,若随意向圆中投球,球落在黑色区域的概率是______.
14.如图,中,,,,将绕点逆时针旋转至,使得点恰好落在上,与交于点,则的面积为_________.
15.若不等式组的解集为,则________.
16.一组数据1,4,4,3,4,3,4的众数是_____.
三、解答题(共8题,共72分)
17.(8分)甲、乙两公司各为“希望工程”捐款2000元.已知乙公司比甲公司人均多捐20元,且乙公司的人数是甲公司人数的,问甲、乙两公司人均捐款各多少元?
18.(8分)如图1,在直角梯形ABCD中,AB⊥BC,AD∥BC,点P为DC上一点,且AP=AB,过点C作CE⊥BP交直线BP于E.
(1) 若,求证:;
(2) 若AB=BC.
① 如图2,当点P与E重合时,求的值;
② 如图3,设∠DAP的平分线AF交直线BP于F,当CE=1,时,直接写出线段AF的长.
19.(8分)计算:sin30°•tan60°+..
20.(8分)如图所示,一幢楼房AB背后有一台阶CD,台阶每层高0.2米,且AC=17.2米,设太阳光线与水平地面的夹角为α,当α=60°时,测得楼房在地面上的影长AE=10米,现有一老人坐在MN这层台阶上晒太阳.(取1.73)
(1)求楼房的高度约为多少米?
(2)过了一会儿,当α=45°时,问老人能否还晒到太阳?请说明理由.
21.(8分)(问题发现)
(1)如图(1)四边形ABCD中,若AB=AD,CB=CD,则线段BD,AC的位置关系为 ;
(拓展探究)
(2)如图(2)在Rt△ABC中,点F为斜边BC的中点,分别以AB,AC为底边,在Rt△ABC外部作等腰三角形ABD和等腰三角形ACE,连接FD,FE,分别交AB,AC于点M,N.试猜想四边形FMAN的形状,并说明理由;
(解决问题)
(3)如图(3)在正方形ABCD中,AB=2,以点A为旋转中心将正方形ABCD旋转60°,得到正方形AB'C'D',请直接写出BD'平方的值.
22.(10分)某校组织学生去9km外的郊区游玩,一部分学生骑自行车先走,半小时后,其他学生乘公共汽车出发,结果他们同时到达.己知公共汽车的速度是自行车速度的3倍,求自行车的速度和公共汽车的速度分别是多少?
23.(12分)如图,某高速公路建设中需要确定隧道AB的长度.已知在离地面1500m高度C
处的飞机上,测量人员测得正前方A、B两点处的俯角分别为60°和45°.求隧道AB的长
(≈1.73).
24.某校为了开阔学生的视野,积极组织学生参加课外读书活动.“放飞梦想”读书小组协助老师随机抽取本校的部分学生,调查他们最喜爱的图书类别(图书分为文学类、艺体类、科普类、其他等四类),并将调查结果绘制成如下两幅不完整的统计图,请你结合图中的信息解答下列问题:求被调查的学生人数;补全条形统计图;已知该校有1200名学生,估计全校最喜爱文学类图书的学生有多少人?
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
设这块圆形纸片的半径为R,圆锥的底面圆的半径为r,利用等腰直径三角形的性质得到AB=R,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长得到2πr=,解得r=R,然后利用勾股定理得到(R)2=(3)2+(R)2,再解方程求出R即可得到这块圆形纸片的直径.
【详解】
设这块圆形纸片的半径为R,圆锥的底面圆的半径为r,则AB=R,根据题意得:
2πr=,解得:r=R,所以(R)2=(3)2+(R)2,解得:R=12,所以这块圆形纸片的直径为24cm.
故选C.
【点睛】
本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.
2、D
【解析】
根据抛物线与x轴有两个不同的交点,根的判别式△>0,再分a>0和a<0两种情况对C、D选项讨论即可得解.
【详解】
A、二次函数y=ax2+bx+c(a≠0)的图象与x轴有两个交点无法确定a的正负情况,故本选项错误;
B、∵x1<x2,
∴△=b2-4ac>0,故本选项错误;
C、若a>0,则x1<x0<x2,
若a<0,则x0<x1<x2或x1<x2<x0,故本选项错误;
D、若a>0,则x0-x1>0,x0-x2<0,
所以,(x0-x1)(x0-x2)<0,
∴a(x0-x1)(x0-x2)<0,
若a<0,则(x0-x1)与(x0-x2)同号,
∴a(x0-x1)(x0-x2)<0,
综上所述,a(x0-x1)(x0-x2)<0正确,故本选项正确.
3、C
【解析】
列举出所有情况,看两次摸出的小球的标号的和等于6的情况数占总情况数的多少即可.
解:
共16种情况,和为6的情况数有3种,所以概率为.
故选C.
4、B
【解析】
解:将两把不同的锁分别用A与B表示,三把钥匙分别用A,B与C表示,且A钥匙能打开A锁,B钥匙能打开B锁,画树状图得:
∵共有6种等可能的结果,一次打开锁的有2种情况,∴一次打开锁的概率为:.故选B.
点睛:本题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.
5、C
【解析】
试题分析:利用根与系数的关系来求方程的另一根.设方程的另一根为α,则α+2=6, 解得α=1.
考点:根与系数的关系.
6、A
【解析】
由于要求四个数的点中距离原点最远的点,所以求这四个点对应的实数绝对值即可求解.
【详解】
∵|-1|=1,|-1|=1,
∴|-1|>|-1|=1>0,
∴四个数表示在数轴上,它们对应的点中,离原点最远的是-1.
故选A.
【点睛】
本题考查了实数与数轴的对应关系,以及估算无理数大小的能力,也利用了数形结合的思想.
7、D
【解析】
试题分析:列表如下
黑
白1
白2
黑
(黑,黑)
(白1,黑)
(白2,黑)
白1
(黑,白1)
(白1,白1)
(白2,白1)
白2
(黑,白2)
(白1,白2)
(白2,白2)
由表格可知,随机摸出一个球后放回搅匀,再随机摸出一个球所以的结果有9种,两次摸出的球都是黑球的结果有1种,所以两次摸出的球都是黑球的概率是.故答案选D.
考点:用列表法求概率.
8、B
【解析】
试题分析:在数轴上,离原点越近则说明这个点所表示的数的绝对值越小,根据数轴可知本题中点B所表示的数的绝对值最小.故选B.
9、B
【解析】
根据题目中的数据可以用科学记数法表示出来,本题得以解决.
【详解】
解:3.82亿=3.82×108,
故选B.
【点睛】
本题考查科学记数法-表示较大的数,解答本题的关键是明确科学记数法的表示方法.
10、A
【解析】
【分析】作BD⊥AC于D,如图,先利用等腰直角三角形的性质得到AC=AB=2,BD=AD=CD=,再利用AC⊥x轴得到C(,2),然后根据反比例函数图象上点的坐标特征计算k的值.
【详解】作BD⊥AC于D,如图,
∵△ABC为等腰直角三角形,
∴AC=AB=2,
∴BD=AD=CD=,
∵AC⊥x轴,
∴C(,2),
把C(,2)代入y=得k=×2=4,
故选A.
【点睛】本题考查了等腰直角三角形的性质以及反比例函数图象上点的坐标特征,熟知反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k是解题的关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、1.
【解析】
由BE平分∠ABC,DE∥BC,易得△BDE是等腰三角形,即可得BD=2AD,又由平行线分线段成比例定理,即可求得答案.
【详解】
解:∵DE∥BC,
∴∠DEB=∠CBE,
∵BE平分∠ABC,
∴∠ABE=∠CBE,
∴∠ABE=∠DEB,
∴BD=DE,
∵DE=2AD,
∴BD=2AD,
∵DE∥BC,
∴AD:DB=AE:EC,
∴EC=2AE=2×3=1.
故答案为:1.
【点睛】
此题考查了平行线分线段成比例定理以及等腰三角形的判定与性质.注意掌握线段的对应关系是解此题的关键.
12、±1
【解析】
试题分析:利用完全平方公式的结构特征判断即可确定出k的值.
解:∵x2+kx+81是完全平方式,
∴k=±1.
故答案为±1.
考点:完全平方式.
13、
【解析】
根据几何概率的求法:球落在黑色区域的概率就是黑色区域的面积与总面积的比值.
【详解】
解:由图可知黑色区域与白色区域的面积相等,故球落在黑色区域的概率是=.
【点睛】
本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.
14、
【解析】
首先证明△CAA′是等边三角形,再证明△A′DC是直角三角形,在Rt△A′DC中利用含30度的直角三角形三边的关系求出CD、A′D即可解决问题.
【详解】
在Rt△ACB中,∠ACB=90°,∠B=30°,
∴∠A=60°,
∵△ABC绕点C逆时针旋转至△A′B′C,使得点A′恰好落在AB上,
∴CA=CA′=2,∠CA′B′=∠A=60°,
∴△CAA′为等边三角形,
∴∠ACA′=60°,
∴∠BCA′=∠ACB -∠ACA′=90°-60°=30°,
∴∠A′DC=180°-∠CA′B′-∠BCA′=90°,
在Rt△A′DC中,∵∠A′CD=30°,
∴A′D=CA′=1,CD=A′D=,
∴.
故答案为:
【点睛】
本题考查了含30度的直角三角形三边的关系,等边三角形的判定和性质以及旋转的性质,掌握旋转的性质“对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等”是解题的关键.
15、-1
【解析】
分析:解出不等式组的解集,与已知解集-1<x<1比较,可以求出a、b的值,然后相加求出2009次方,可得最终答案.
详解:由不等式得x>a+2,x<b,
∵-1<x<1,
∴a+2=-1,b=1
∴a=-3,b=2,
∴(a+b)2009=(-1)2009=-1.
故答案为-1.
点睛:本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知处理,求出解集与已知解集比较,进而求得零一个未知数.
16、1
【解析】
本题考查了统计的有关知识,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.
【详解】
在这一组数据中1是出现次数最多的,故众数是1.
故答案为1.
【点睛】
本题为统计题,考查了众数的定义,是基础题型.
三、解答题(共8题,共72分)
17、甲、乙两公司人均捐款分别为80元、100元.
【解析】
试题分析:本题考察的是分式的应用题,设甲公司人均捐款x元,根据题意列出方程即可.
试题解析:
设甲公司人均捐款x元
解得:
经检验,为原方程的根, 80+20=100
答:甲、乙两公司人均各捐款为80元、100元.
18、(1)证明见解析;(2)①;②3.
【解析】
(1) 过点A作AF⊥BP于F,根据等腰三角形的性质得到BF=BP,易证Rt△ABF∽Rt△BCE,根据相似三角形的性质得到,即可证明BP=CE.
(2) ①延长BP、AD交于点F,过点A作AG⊥BP于G,证明△ABG≌△BCP,根据全等三角形的性质得BG=CP,设BG=1,则PG=PC=1,BC=AB=,在Rt△ABF中,由射影定理知,AB2=BG·BF=5,即可求出BF=5,PF=5-1-1=3,即可求出的值;
② 延长BF、AD交于点G,过点A作AH⊥BE于H,证明△ABH≌△BCE,根据全等三角形的性质得BG=CP,设BH=BP=CE=1,又,得到PG=,BG=,根据射影定理得到AB2=BH·BG ,即可求出AB= ,根据勾股定理得到
,根据等腰直角三角形的性质得到.
【详解】
解:(1) 过点A作AF⊥BP于F
∵AB=AP
∴BF=BP,
∵Rt△ABF∽Rt△BCE
∴
∴BP=CE.
(2) ①延长BP、AD交于点F,过点A作AG⊥BP于G
∵AB=BC
∴△ABG≌△BCP(AAS)
∴BG=CP
设BG=1,则PG=PC=1
∴BC=AB=
在Rt△ABF中,由射影定理知,AB2=BG·BF=5
∴BF=5,PF=5-1-1=3
∴
② 延长BF、AD交于点G,过点A作AH⊥BE于H
∵AB=BC
∴△ABH≌△BCE(AAS)
设BH=BP=CE=1
∵
∴PG=,BG=
∵AB2=BH·BG
∴AB=
∴
∵AF平分∠PAD,AH平分∠BAP
∴∠FAH=∠BAD=45°
∴△AFH为等腰直角三角形
∴
【点睛】
考查等腰三角形的性质,勾股定理,射影定理,平行线分线段成比例定理等,解题的关键是作出辅助线.难度较大.
19、
【解析】
试题分析:把相关的特殊三角形函数值代入进行计算即可.
试题解析:原式=.
20、(1)楼房的高度约为17.3米;(2)当α=45°时,老人仍可以晒到太阳.理由见解析.
【解析】
试题分析:(1)在Rt△ABE中,根据的正切值即可求得楼高;(2)当时,从点B射下的光线与地面AD的交点为F,与MC的交点为点H.可求得AF=AB=17.3米,又因CF=CH=17.3-17.2=0.1米,CM=0.2,所以大楼的影子落在台阶MC这个侧面上.即小猫仍可晒到太阳.
试题解析:解:(1)当当时,在Rt△ABE中,
∵,
∴BA=10tan60°=米.
即楼房的高度约为17.3米.
当时,小猫仍可晒到太阳.理由如下:
假设没有台阶,当时,从点B射下的光线与地面AD的交点为F,与MC的交点为点H.
∵∠BFA=45°,
∴,此时的影长AF=BA=17.3米,
所以CF=AF-AC=17.3-17.2=0.1.
∴CH=CF=0.1米,
∴大楼的影子落在台阶MC这个侧面上.
∴小猫仍可晒到太阳.
考点:解直角三角形.
21、(1)AC垂直平分BD;(2)四边形FMAN是矩形,理由见解析;(3)16+8或16﹣8
【解析】
(1)依据点A在线段BD的垂直平分线上,点C在线段BD的垂直平分线上,即可得出AC垂直平分BD;
(2)根据Rt△ABC中,点F为斜边BC的中点,可得AF=CF=BF,再根据等腰三角形ABD 和等腰三角形ACE,即可得到AD=DB,AE=CE,进而得出∠AMF=∠MAN=∠ANF=90°,即可判定四边形AMFN是矩形;
(3)分两种情况:①以点A为旋转中心将正方形ABCD逆时针旋转60°,②以点A为旋转中心将正方形ABCD顺时针旋转60°,分别依据旋转的性质以及勾股定理,即可得到结论.
【详解】
(1)∵AB=AD,CB=CD,
∴点A在线段BD的垂直平分线上,点C在线段BD的垂直平分线上,
∴AC垂直平分BD,
故答案为AC垂直平分BD;
(2)四边形FMAN是矩形.理由:
如图2,连接AF,
∵Rt△ABC中,点F为斜边BC的中点,
∴AF=CF=BF,
又∵等腰三角形ABD 和等腰三角形ACE,
∴AD=DB,AE=CE,
∴由(1)可得,DF⊥AB,EF⊥AC,
又∵∠BAC=90°,
∴∠AMF=∠MAN=∠ANF=90°,
∴四边形AMFN是矩形;
(3)BD′的平方为16+8或16﹣8.
分两种情况:
①以点A为旋转中心将正方形ABCD逆时针旋转60°,
如图所示:过D'作D'E⊥AB,交BA的延长线于E,
由旋转可得,∠DAD'=60°,
∴∠EAD'=30°,
∵AB=2=AD',
∴D'E=AD'=,AE=,
∴BE=2+,
∴Rt△BD'E中,BD'2=D'E2+BE2=()2+(2+)2=16+8
②以点A为旋转中心将正方形ABCD顺时针旋转60°,
如图所示:过B作BF⊥AD'于F,
旋转可得,∠DAD'=60°,
∴∠BAD'=30°,
∵AB=2=AD',
∴BF=AB=,AF=,
∴D'F=2﹣,
∴Rt△BD'F中,BD'2=BF2+D'F2=()2+(2-)2=16﹣8
综上所述,BD′平方的长度为16+8或16﹣8.
【点睛】
本题属于四边形综合题,主要考查了正方形的性质,矩形的判定,旋转的性质,线段垂直平分线的性质以及勾股定理的综合运用,解决问题的关键是作辅助线构造直角三角形,依据勾股定理进行计算求解.解题时注意:有三个角是直角的四边形是矩形.
22、自行车的速度是12km/h,公共汽车的速度是1km/h.
【解析】
设自行车的速度为xkm/h,则公共汽车的速度为3xkm/h,根据题意得:,解分式方程即可.
【详解】
解:设自行车的速度为xkm/h,则公共汽车的速度为3xkm/h,
根据题意得:,
解得:x=12,
经检验,x=12是原分式方程的解,
∴3x=1.
答:自行车的速度是12km/h,公共汽车的速度是1km/h.
【点睛】
本题考核知识点:列分式方程解应用题.解题关键点:找出相等关系,列出方程.
23、简答:∵OA,
OB=OC=1500,
∴AB=(m).
答:隧道AB的长约为635m.
【解析】
试题分析:首先过点C作CO⊥AB,根据Rt△AOC求出OA的长度,根据Rt△CBO求出OB的长度,然后进行计算.
试题解析:如图,过点C作CO⊥直线AB,垂足为O,则CO="1500m"
∵BC∥OB ∴∠DCA=∠CAO=60°,∠DCB=∠CBO=45°
∴在Rt△CAO 中,OA==1500×=500m
在Rt△CBO 中,OB=1500×tan45°=1500m
∴AB=1500-500≈1500-865=635(m)
答:隧道AB的长约为635m.
考点:锐角三角函数的应用.
24、(4)60;(4)作图见试题解析;(4)4.
【解析】
试题分析:(4)利用科普类的人数以及所占百分比,即可求出被调查的学生人数;
(4)利用(4)中所求得出喜欢艺体类的学生数进而画出图形即可;
(4)首先求出样本中喜爱文学类图书所占百分比,进而估计全校最喜爱文学类图书的学生数.
试题解析:(4)被调查的学生人数为:44÷40%=60(人);
(4)喜欢艺体类的学生数为:60-44-44-46=8(人),
如图所示:
全校最喜爱文学类图书的学生约有:4400×=4(人).
考点:4.条形统计图;4.用样本估计总体;4.扇形统计图.
相关试卷
这是一份江苏省苏州市区重点名校2022年中考猜题数学试卷含解析,共20页。
这是一份江苏省苏州市区重点名校2022年中考数学对点突破模拟试卷含解析,共19页。试卷主要包含了下列四个命题中,真命题是等内容,欢迎下载使用。
这是一份江苏省苏州市常熟达标名校2021-2022学年中考数学押题试卷含解析,共21页。试卷主要包含了如图,已知直线l1,下列各运算中,计算正确的是等内容,欢迎下载使用。