江苏省苏州市星湾中学2021-2022学年中考数学考试模拟冲刺卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.有15位同学参加歌咏比赛,所得的分数互不相同,取得分前8位同学进入决赛.某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这15位同学的( )
A.平均数 B.中位数 C.众数 D.方差
2.如图,AB是⊙O的直径,CD是⊙O的弦,∠ACD=30°,则∠BAD为( )
A.30° B.50° C.60° D.70°
3.如果零上2℃记作+2℃,那么零下3℃记作( )
A.-3℃ B.-2℃ C.+3℃ D.+2℃
4.若实数m满足,则下列对m值的估计正确的是( )
A.﹣2<m<﹣1 B.﹣1<m<0 C.0<m<1 D.1<m<2
5.如图,点A,B在反比例函数的图象上,点C,D在反比例函数的图象上,AC//BD//y轴,已知点A,B的横坐标分别为1,2,△OAC与△ABD的面积之和为,则k的值为( )
A.4 B.3 C.2 D.
6.将某不等式组的解集表示在数轴上,下列表示正确的是( )
A. B.
C. D.
7.下列多边形中,内角和是一个三角形内角和的4倍的是( )
A.四边形 B.五边形 C.六边形 D.八边形
8.已知二次函数的与的不符对应值如下表:
且方程的两根分别为,,下面说法错误的是( ).
A., B.
C.当时, D.当时,有最小值
9.如图,夜晚,小亮从点A经过路灯C的正下方沿直线走到点B,他的影长y随他与点A之间的距离x的变化而变化,那么表示y与x之间的函数关系的图象大致为( )
A. B.
C. D.
10.tan45°的值等于( )
A. B. C. D.1
11.估计5﹣的值应在( )
A.5和6之间 B.6和7之间 C.7和8之间 D.8和9之间
12.如图是由5个大小相同的正方体组成的几何体,则该几何体的主视图是( )
A. B. C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.因式分解:a2﹣a=_____.
14.如图所示:在平面直角坐标系中,△OCB的外接圆与y轴交于A(0,),∠OCB=60°,∠COB=45°,则OC= .
15.已知m=,n=,那么2016m﹣n=_____.
16.如图,在△ABC中,DE∥BC,EF∥AB.若AD=2BD,则的值等于_____
17.分解因式: _________.
18.计算5个数据的方差时,得s2=[(5﹣)2+(8﹣)2+(7﹣)2+(4﹣)2+(6﹣)2],则的值为_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)抛物线y=﹣x2+(m﹣1)x+m与y轴交于(0,3)点.
(1)求出m的值并画出这条抛物线;
(2)求它与x轴的交点和抛物线顶点的坐标;
(3)x取什么值时,抛物线在x轴上方?
(4)x取什么值时,y的值随x值的增大而减小?
20.(6分)综合与探究:
如图1,抛物线y=﹣x2+x+与x轴分别交于A、B两点(点A在点B的左侧),与y轴交于C点.经过点A的直线l与y轴交于点D(0,﹣).
(1)求A、B两点的坐标及直线l的表达式;
(2)如图2,直线l从图中的位置出发,以每秒1个单位的速度沿x轴的正方向运动,运动中直线l与x轴交于点E,与y轴交于点F,点A 关于直线l的对称点为A′,连接FA′、BA′,设直线l的运动时间为t(t>0)秒.探究下列问题:
①请直接写出A′的坐标(用含字母t的式子表示);
②当点A′落在抛物线上时,求直线l的运动时间t的值,判断此时四边形A′BEF的形状,并说明理由;
(3)在(2)的条件下,探究:在直线l的运动过程中,坐标平面内是否存在点P,使得以P,A′,B,E为顶点的四边形为矩形?若存在,请直接写出点P的坐标; 若不存在,请说明理由.
21.(6分)为了了解市民“获取新闻的最主要途径”,某市记者开展了一次抽样调查,根据调査结果绘制了如下尚不完整的统计图:
根据以上信息解答下列问题:这次接受调查的市民总人数是_______人;扇形统计图中,“电视”所对应的圆心角的度数是_________;请补全条形统计图;若该市约有80万人,请你估计其中将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数.
22.(8分)计算:.化简:.
23.(8分)许昌文峰塔又称文明寺塔,为全国重点文物保护单位,某校初三数学兴趣小组的同学想要利用学过的知识测量文峰塔的高度,他们找来了测角仪和卷尺,在点A处测得塔顶C的仰角为30°,向塔的方向移动60米后到达点B,再次测得塔顶C的仰角为60°,试通过计算求出文峰塔的高度CD.(结果保留两位小数)
24.(10分)读诗词解题:(通过列方程式,算出周瑜去世时的年龄)
大江东去浪淘尽,千古风流数人物;
而立之年督东吴,早逝英年两位数;
十位恰小个位三,个位平方与寿符;
哪位学子算得快,多少年华属周瑜?
25.(10分)计算:2﹣1+|﹣|++2cos30°
26.(12分)已知:如图,E是BC上一点,AB=EC,AB∥CD,BC=CD.求证:AC=ED.
27.(12分)解不等式组并写出它的整数解.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
由中位数的概念,即最中间一个或两个数据的平均数;可知15人成绩的
中位数是第8名的成绩.根据题意可得:参赛选手要想知道自己是否能进入前8
名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.
【详解】
解:由于15个人中,第8名的成绩是中位数,故小方同学知道了自己的
分数后,想知道自己能否进入决赛,还需知道这十五位同学的分数的中位数.
故选B.
【点睛】
此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义.反
映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统
计量进行合理的选择和恰当的运用.
2、C
【解析】
试题分析:连接BD,∵∠ACD=30°,∴∠ABD=30°,
∵AB为直径,∴∠ADB=90°,∴∠BAD=90°﹣∠ABD=60°.
故选C.
考点:圆周角定理
3、A
【解析】
一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.
【详解】
∵“正”和“负”相对,∴如果零上2℃记作+2℃,那么零下3℃记作-3℃.
故选A.
4、A
【解析】
试题解析:∵,
∴m2+2+=0,
∴m2+2=-,
∴方程的解可以看作是函数y=m2+2与函数y=-,
作函数图象如图,
在第二象限,函数y=m2+2的y值随m的增大而减小,函数y=-的y值随m的增大而增大,
当m=-2时y=m2+2=4+2=6,y=-=-=2,
∵6>2,
∴交点横坐标大于-2,
当m=-1时,y=m2+2=1+2=3,y=-=-=4,
∵3<4,
∴交点横坐标小于-1,
∴-2<m<-1.
故选A.
考点:1.二次函数的图象;2.反比例函数的图象.
5、B
【解析】
首先根据A,B两点的横坐标,求出A,B两点的坐标,进而根据AC//BD// y 轴,及反比例函数图像上的点的坐标特点得出C,D两点的坐标,从而得出AC,BD的长,根据三角形的面积公式表示出S△OAC,S△ABD的面积,再根据△OAC与△ABD的面积之和为,列出方程,求解得出答案.
【详解】
把x=1代入得:y=1,
∴A(1,1),把x=2代入得:y=,
∴B(2, ),
∵AC//BD// y轴,
∴C(1,K),D(2,)
∴AC=k-1,BD=-,
∴S△OAC=(k-1)×1,
S△ABD= (-)×1,
又∵△OAC与△ABD的面积之和为,
∴(k-1)×1+ (-)×1=,解得:k=3;
故答案为B.
【点睛】
:此题考查了反比例函数系数k的几何意义,以及反比例函数图象上点的坐标特征,熟练掌握反比例函数k的几何意义是解本题的关键.
6、B
【解析】
分析:本题可根据数轴的性质画出数轴:实心圆点包括该点用“≥”,“≤”表示,空心圆点不包括该点用“<”,“>”表示,大于向右小于向左.
点睛:不等式组的解集为−1⩽x<3在数轴表示−1和3以及两者之间的部分:
故选B.
点睛:本题考查在数轴上表示不等式解集:把每个不等式的解集在数轴上表示出来(>,≥向右画;< ,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.
7、C
【解析】
利用多边形的内角和公式列方程求解即可
【详解】
设这个多边形的边数为n.
由题意得:(n﹣2)×180°=4×180°.
解得:n=1.
答:这个多边形的边数为1.
故选C.
【点睛】
本题主要考查的是多边形的内角和公式,掌握多边形的内角和公式是解题的关键.
8、C
【解析】
分别结合图表中数据得出二次函数对称轴以及图像与x轴交点范围和自变量x与y的对应情况,进而得出答案.
【详解】
A、利用图表中x=0,1时对应y的值相等,x=﹣1,2时对应y的值相等,∴x=﹣2,5时对应y的值相等,∴x=﹣2,y=5,故此选项正确;B、方程ax2+bc+c=0的两根分别是x1、x2(x1<x2),且x=1时y=﹣1;x=2时,y=1,∴1<x2<2,故此选项正确;C、由题意可得出二次函数图像向上,∴当x1<x<x2时,y<0,故此选项错误;D、∵利用图表中x=0,1时对应y的值相等,∴当x=时,y有最小值,故此选项正确,不合题意.所以选C.
【点睛】
此题主要考查了抛物线与x轴的交点以及利用图像上点的坐标得出函数的性质,利用数形结合得出是解题关键.
9、A
【解析】
设身高GE=h,CF=l,AF=a,
当x≤a时,
在△OEG和△OFC中,
∠GOE=∠COF(公共角),∠AEG=∠AFC=90°,
∴△OEG∽△OFC,
∴,
∵a、h、l都是固定的常数,
∴自变量x的系数是固定值,
∴这个函数图象肯定是一次函数图象,即是直线;
∵影长将随着离灯光越来越近而越来越短,到灯下的时候,将是一个点,进而随着离灯光的越来越远而影长将变大.
故选A.
10、D
【解析】
根据特殊角三角函数值,可得答案.
【详解】
解:tan45°=1,
故选D.
【点睛】
本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.
11、C
【解析】
先化简二次根式,合并后,再根据无理数的估计解答即可.
【详解】
5﹣=,
∵49<54<64,
∴7<<8,
∴5﹣的值应在7和8之间,
故选C.
【点睛】
本题考查了估算无理数的大小,解决本题的关键是估算出无理数的大小.
12、A
【解析】
试题分析:观察图形可知,该几何体的主视图是.故选A.
考点:简单组合体的三视图.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、a(a﹣1)
【解析】
直接提取公因式a,进而分解因式得出答案
【详解】
a2﹣a=a(a﹣1).
故答案为a(a﹣1).
【点睛】
此题考查公因式,难度不大
14、1+
【解析】
试题分析:连接AB,由圆周角定理知AB必过圆心M,Rt△ABO中,易知∠BAO=∠OCB=60°,已知了OA=,即可求得OB的长;
过B作BD⊥OC,通过解直角三角形即可求得OD、BD、CD的长,进而由OC=OD+CD求出OC的长.
解:连接AB,则AB为⊙M的直径.
Rt△ABO中,∠BAO=∠OCB=60°,
∴OB=OA=×=.
过B作BD⊥OC于D.
Rt△OBD中,∠COB=45°,
则OD=BD=OB=.
Rt△BCD中,∠OCB=60°,
则CD=BD=1.
∴OC=CD+OD=1+.
故答案为1+.
点评:此题主要考查了圆周角定理及解直角三角形的综合应用能力,能够正确的构建出与已知和所求相关的直角三角形是解答此题的关键.
15、1
【解析】
根据积的乘方的性质将m的分子转化为以3和5为底数的幂的积,然后化简从而得到m=n,再根据任何非零数的零次幂等于1解答.
【详解】
解:∵m===,
∴m=n,
∴2016m-n=20160=1.
故答案为:1
【点睛】
本题考查了同底数幂的除法,积的乘方的性质,难点在于转化m的分母并得到m=n.
16、
【解析】
根据平行线分线段成比例定理解答即可.
【详解】
解:∵DE∥BC,AD=2BD,
∴,
∵EF∥AB,
∴,
故答案为.
【点睛】
本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.
17、
【解析】
先提取公因式b,再利用完全平方公式进行二次分解.
解答:解:a1b-1ab+b,
=b(a1-1a+1),…(提取公因式)
=b(a-1)1.…(完全平方公式)
18、1
【解析】
根据平均数的定义计算即可.
【详解】
解:
故答案为1.
【点睛】
本题主要考查平均数的求法,掌握平均数的公式是解题的关键.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1);(2),;(1);(2)
【解析】
试题分析:(1)由抛物线y=﹣x2+(m﹣1)x+m与y轴交于(0,1)得:m=1.
∴抛物线为y=﹣x2+2x+1=﹣(x﹣1)2+2.
列表得:
X
﹣1
0
1
2
1
y
0
1
2
1
0
图象如下.
(2)由﹣x2+2x+1=0,得:x1=﹣1,x2=1.
∴抛物线与x轴的交点为(﹣1,0),(1,0).
∵y=﹣x2+2x+1=﹣(x﹣1)2+2
∴抛物线顶点坐标为(1,2).
(1)由图象可知:
当﹣1<x<1时,抛物线在x轴上方.
(2)由图象可知:
当x>1时,y的值随x值的增大而减小
考点: 二次函数的运用
20、(1)A(﹣1,0),B(3,0),y=﹣x﹣;
(2)①A′(t﹣1, t);②A′BEF为菱形,见解析;
(3)存在,P点坐标为(,)或(,﹣).
【解析】
(1)通过解方程﹣x2+x+=0得A(−1,0),B(3,0),然后利用待定系数法确定直线l的解析式;
(2)①作A′H⊥x轴于H,如图2,利用OA=1,OD=得到∠OAD=60°,再利用平移和对称的性质得到EA=EA′=t,∠A′EF=∠AEF=60°,然后根据含30度的直角三角形三边的关系表示出A′H,EH即可得到A′的坐标;
②把A′(t−1,t)代入y=−x2+x+得−(t−1)2+(t−1)+=t,解方程得到t=2,此时A′点的坐标为(2,),E(1,0),然后通过计算得到AF=BE=2,A′F∥BE,从而判断四边形A′BEF为平行四边形,然后加上EF=BE可判定四边形A′BEF为菱形;
(3)讨论:当A′B⊥BE时,四边形A′BEP为矩形,利用点A′和点B的横坐标相同得到t−1=3,解方程求出t得到A′(3,),再利用矩形的性质可写出对应的P点坐标;当A′B⊥EA′,如图4,四边形A′BPE为矩形,作A′Q⊥x轴于Q,先确定此时A′点的坐标,然后利用点的平移确定对应P点坐标.
【详解】
(1)当y=0时,﹣x2+x+=0,解得x1=﹣1,x2=3,则A(﹣1,0),B(3,0),
设直线l的解析式为y=kx+b,
把A(﹣1,0),D(0,﹣)代入得,解得,
∴直线l的解析式为y=﹣x﹣;
(2)①作A′H⊥x轴于H,如图,
∵OA=1,OD=,
∴∠OAD=60°,
∵EF∥AD,
∴∠AEF=60°,
∵点A 关于直线l的对称点为A′,
∴EA=EA′=t,∠A′EF=∠AEF=60°,
在Rt△A′EH中,EH=EA′=t,A′H=EH=t,
∴OH=OE+EH=t﹣1+t=t﹣1,
∴A′(t﹣1, t);
②把A′(t﹣1, t)代入y=﹣x2+x+得﹣(t﹣1)2+(t﹣1)+=t,
解得t1=0(舍去),t2=2,
∴当点A′落在抛物线上时,直线l的运动时间t的值为2;
此时四边形A′BEF为菱形,理由如下:
当t=2时,A′点的坐标为(2,),E(1,0),
∵∠OEF=60°
∴OF=OE=,EF=2OE=2,
∴F(0,),
∴A′F∥x轴,
∵A′F=BE=2,A′F∥BE,
∴四边形A′BEF为平行四边形,
而EF=BE=2,
∴四边形A′BEF为菱形;
(3)存在,如图:
当A′B⊥BE时,四边形A′BEP为矩形,则t﹣1=3,解得t=,则A′(3,),
∵OE=t﹣1=,
∴此时P点坐标为(,);
当A′B⊥EA′,如图,四边形A′BPE为矩形,作A′Q⊥x轴于Q,
∵∠AEA′=120°,
∴∠A′EB=60°,
∴∠EBA′=30°
∴BQ=A′Q=•t=t,
∴t﹣1+t=3,解得t=,
此时A′(1,),E(,0),
点A′向左平移个单位,向下平移个单位得到点E,则点B(3,0)向左平移个单位,向下平移个单位得到点P,则P(,﹣),
综上所述,满足条件的P点坐标为(,)或(,﹣).
【点睛】
本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质、菱形的判定和矩形的性质;会利用待定系数法求函数解析式;理解坐标与图形性质.
21、 (1)1000;(2)54°;(3)见解析;(4)32万人
【解析】
根据“每项人数=总人数×该项所占百分比”,“所占角度=360度×该项所占百分比”来列出式子,即可解出答案.
【详解】
解:
(1)400÷40%=1000(人)
(2)360°×=54°,
故答案为:1000人; 54° ;
(3)1-10%-9%-26%-40%=15%
15%×1000=150(人)
(4)80×=52.8(万人)
答:总人数为52.8万人.
【点睛】
本题考查获取图表信息的能力,能够根据图表找到必要条件是解题关键.
22、(1)5;(2)-3x+4
【解析】
(1)第一项计算算术平方根,第二项计算零指数幂,第三项计算特殊角的三角函数值,最后计算有理数运算.
(2)利用完全平方公式和去括号法则进行计算,再进行合并同类项运算.
【详解】
(1)解:原式
(2)解:原式
【点睛】
本题考查实数的混合运算和整式运算,解题关键是熟练运用完全平方公式和熟记特殊角的三角函数值.
23、51.96米.
【解析】
先根据三角形外角的性质得出∠ACB=30°,进而得出AB=BC=1,在Rt△BDC中,,即可求出CD的长.
【详解】
解:∵∠CBD=1°,∠CAB=30°,
∴∠ACB=30°.
∴AB=BC=1.
在Rt△BDC中,
∴(米).
答:文峰塔的高度CD约为51.96米.
【点睛】
本题考查解直角三角形的应用,解题的关键是明确题意,利用锐角三角函数进行解答.
24、周瑜去世的年龄为16岁.
【解析】
设周瑜逝世时的年龄的个位数字为x,则十位数字为x﹣1.根据题意建立方程求出其值就可以求出其结论.
【详解】
设周瑜逝世时的年龄的个位数字为x,则十位数字为x﹣1.由题意得;
10(x﹣1)+x=x2,
解得:x1=5,x2=6
当x=5时,周瑜的年龄25岁,非而立之年,不合题意,舍去;
当x=6时,周瑜年龄为16岁,完全符合题意.
答:周瑜去世的年龄为16岁.
【点睛】
本题是一道数字问题的运用题,考查了列一元二次方程解实际问题的运用,在解答中理解而立之年是一个人10岁的年龄是关键.
25、+4.
【解析】
原式利用负整数指数幂法则,二次根式性质,以及特殊角的三角函数值计算即可求出值.
【详解】
原式=++2+2×=+4.
【点睛】
本题考查了实数的运算,涉及了负整数指数幂、特殊角的三角函数值、二次根式的化简等,熟练掌握各运算的运算法则是解本题的关键.
26、见解析
【解析】
试题分析:已知AB∥CD,根据两直线平行,内错角相等可得∠B=∠ECD,再根据SAS证明△ABC≌△ECD全,由全等三角形对应边相等即可得AC=ED.
试题解析:∵AB∥CD,∴∠B=∠DCE.在△ABC和△ECD中,∴△ABC≌△ECD(SAS),∴AC=ED.
考点:平行线的性质;全等三角形的判定及性质.
27、不等式组的解集是5<x≤1,整数解是6,1
【解析】
先分别求出两个不等式的解,求出解集,再根据整数的定义得到答案.
【详解】
∵解①得:x>5,
解不等式②得:x≤1,
∴不等式组的解集是5<x≤1,
∴不等式组的整数解是6,1.
【点睛】
本题考查求一元一次不等式组,解题的关键是掌握求一元一次不等式组的方法
江苏省苏州市名校2022年中考数学考试模拟冲刺卷含解析: 这是一份江苏省苏州市名校2022年中考数学考试模拟冲刺卷含解析,共19页。试卷主要包含了的负倒数是等内容,欢迎下载使用。
江苏省江都区丁伙中学2021-2022学年中考数学考试模拟冲刺卷含解析: 这是一份江苏省江都区丁伙中学2021-2022学年中考数学考试模拟冲刺卷含解析,共26页。试卷主要包含了如图,在平面直角坐标系中,A等内容,欢迎下载使用。
2022届江苏省苏州市相城第三实验中学中考数学考试模拟冲刺卷含解析: 这是一份2022届江苏省苏州市相城第三实验中学中考数学考试模拟冲刺卷含解析,共17页。试卷主要包含了考生要认真填写考场号和座位序号,下列图案是轴对称图形的是,如图,两个反比例函数y1=,下列计算正确的是,不等式组的解集在数轴上表示为等内容,欢迎下载使用。