![江苏省泰州市靖江实验学校2022年中考联考数学试题含解析第1页](http://img-preview.51jiaoxi.com/2/3/13558677/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![江苏省泰州市靖江实验学校2022年中考联考数学试题含解析第2页](http://img-preview.51jiaoxi.com/2/3/13558677/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![江苏省泰州市靖江实验学校2022年中考联考数学试题含解析第3页](http://img-preview.51jiaoxi.com/2/3/13558677/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
江苏省泰州市靖江实验学校2022年中考联考数学试题含解析
展开
这是一份江苏省泰州市靖江实验学校2022年中考联考数学试题含解析,共19页。试卷主要包含了如图等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图,在中,,,,将折叠,使点与的中点重合,折痕为,则线段的长为( )
A. B. C. D.
2.如图是抛物线y=ax2+bx+c(a≠0)的图象的一部分,抛物线的顶点坐标是A(1,4),与x轴的一个交点是B(3,0),下列结论:①abc>0;②2a+b=0;③方程ax2+bx+c=4有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣2.0);⑤x(ax+b)≤a+b,其中正确结论的个数是( )
A.4个 B.3个 C.2个 D.1个
3.已知x2-2x-3=0,则2x2-4x的值为( )
A.-6 B.6 C.-2或6 D.-2或30
4.矩形具有而平行四边形不具有的性质是( )
A.对角相等 B.对角线互相平分
C.对角线相等 D.对边相等
5.的算术平方根是( )
A.9 B.±9 C.±3 D.3
6.如图:将一个矩形纸片,沿着折叠,使点分别落在点处.若,则的度数为( )
A. B. C. D.
7.下列各式中,不是多项式2x2﹣4x+2的因式的是( )
A.2 B.2(x﹣1) C.(x﹣1)2 D.2(x﹣2)
8.一个关于x的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是( )
A.x>1 B.x≥1 C.x>3 D.x≥3
9.2014 年底,国务院召开了全国青少年校园足球工作会议,明确由教育部正式牵头负 责校园足球工作.2018 年 2 月 1 日,教育部第三场新春系列发布会上,王登峰司长总 结前三年的工作时提到:校园足球场地,目前全国校园里面有 5 万多块,到 2020 年 要达到 85000 块.其中 85000 用科学记数法可表示为( )
A.0.85 ´ 105 B.8.5 ´ 104 C.85 ´ 10-3 D.8.5 ´ 10-4
10.如图,是直角三角形,,,点在反比例函数的图象上.若点在反比例函数的图象上,则的值为( )
A.2 B.-2 C.4 D.-4
二、填空题(共7小题,每小题3分,满分21分)
11.如果一个正多边形的中心角为72°,那么这个正多边形的边数是 .
12.已知(x+y)2=25,(x﹣y)2=9,则x2+y2=_____.
13.计算:+(|﹣3|)0=_____.
14.若点(,1)与(﹣2,b)关于原点对称,则=_______.
15.如图,在矩形ABCD中,AB=5,BC=3,将矩形ABCD绕点B按顺时针方向旋转得到矩形GBEF,点A落在矩形ABCD的边CD上,连接CE,则CE的长是________.
16.在△ABC中,∠A:∠B:∠C=1:2:3,它的最小边的长是2cm,则它的最大边的长是_____cm.
17.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是_______.
三、解答题(共7小题,满分69分)
18.(10分)兴发服装店老板用4500元购进一批某款T恤衫,由于深受顾客喜爱,很快售完,老板又用4950元购进第二批该款式T恤衫,所购数量与第一批相同,但每件进价比第一批多了9元.第一批该款式T恤衫每件进价是多少元?老板以每件120元的价格销售该款式T恤衫,当第二批T恤衫售出时,出现了滞销,于是决定降价促销,若要使第二批的销售利润不低于650元,剩余的T恤衫每件售价至少要多少元?(利润=售价﹣进价)
19.(5分)为了保障市民安全用水,我市启动自来水管改造工程,该工程若甲队单独施工,恰好在规定时间内完成;若由乙队单独施工,则完成工程所需天数是规定天数的3倍.若甲、乙两队先合作施工45天,则余下的工程甲队还需单独施工23天才能完成.这项工程的规定时间是多少天?
20.(8分)为响应“学雷锋、树新风、做文明中学生”号召,某校开展了志愿者服务活动,活动项目有“戒毒宣传”、“文明交通岗”、“关爱老人”、“义务植树”、“社区服务”等五项,活动期间,随机抽取了部分学生对志愿者服务情况进行调查,结果发现,被调查的每名学生都参与了活动,最少的参与了1项,最多的参与了5项,根据调查结果绘制了如图所示不完整的折线统计图和扇形统计图.
被随机抽取的学生共有多少名?在扇形统计图中,求活动数为3项的学生所对应的扇形圆心角的度数,并补全折线统计图;该校共有学生2000人,估计其中参与了4项或5项活动的学生共有多少人?
21.(10分)如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB的延长线相交于点P,弦CE平分∠ACB,交AB点F,连接BE.
(1)求证:AC平分∠DAB;
(2)求证:PC=PF;
(3)若tan∠ABC=,AB=14,求线段PC的长.
22.(10分)央视热播节目“朗读者”激发了学生的阅读兴趣,某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:
此次共调查了 名学生;将条形统计图1补充完整;图2中“小说类”所在扇形的圆心角为 度;若该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数.
23.(12分)如图,在正方形ABCD的外部,分别以CD,AD为底作等腰Rt△CDE、等腰Rt△DAF,连接AE、CF,交点为O.
(1)求证:△CDF≌△ADE;
(2)若AF=1,求四边形ABCO的周长.
24.(14分)如图,抛物线y=ax2+bx+c与x轴相交于点A(﹣3,0),B(1,0),与y轴相交于(0,﹣),顶点为P.
(1)求抛物线解析式;
(2)在抛物线是否存在点E,使△ABP的面积等于△ABE的面积?若存在,求出符合条件的点E的坐标;若不存在,请说明理由;
(3)坐标平面内是否存在点F,使得以A、B、P、F为顶点的四边形为平行四边形?直接写出所有符合条件的点F的坐标,并求出平行四边形的面积.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
设BN=x,则由折叠的性质可得DN=AN=9-x,根据中点的定义可得BD=3,在Rt△BND中,根据勾股定理可得关于x的方程,解方程即可求解.
【详解】
设,则.
由折叠的性质,得.
因为点是的中点,
所以.
在中,
由勾股定理,得,
即,
解得,
故线段的长为4.
故选C.
【点睛】
此题考查了折叠的性质,勾股定理,中点的定义以及方程思想,熟练掌握折叠的性质及勾股定理是解答本题的关键.
2、B
【解析】
通过图象得到、、符号和抛物线对称轴,将方程转化为函数图象交点问题,利用抛物线顶点证明.
【详解】
由图象可知,抛物线开口向下,则,,
抛物线的顶点坐标是,
抛物线对称轴为直线,
,
,则①错误,②正确;
方程的解,可以看做直线与抛物线的交点的横坐标,
由图象可知,直线经过抛物线顶点,则直线与抛物线有且只有一个交点,
则方程有两个相等的实数根,③正确;
由抛物线对称性,抛物线与轴的另一个交点是,则④错误;
不等式可以化为,
抛物线顶点为,
当时,,
故⑤正确.
故选:.
【点睛】
本题是二次函数综合题,考查了二次函数的各项系数与图象位置的关系、抛物线对称性和最值,以及用函数的观点解决方程或不等式.
3、B
【解析】
方程两边同时乘以2,再化出2x2-4x求值.
解:x2-2x-3=0
2×(x2-2x-3)=0
2×(x2-2x)-6=0
2x2-4x=6
故选B.
4、C
【解析】
试题分析:举出矩形和平行四边形的所有性质,找出矩形具有而平行四边形不具有的性质即可.
解:矩形的性质有:①矩形的对边相等且平行,②矩形的对角相等,且都是直角,③矩形的对角线互相平分、相等;
平行四边形的性质有:①平行四边形的对边分别相等且平行,②平行四边形的对角分别相等,③平行四边形的对角线互相平分;
∴矩形具有而平行四边形不一定具有的性质是对角线相等,
故选C.
5、D
【解析】
根据算术平方根的定义求解.
【详解】
∵=9,
又∵(±1)2=9,
∴9的平方根是±1,
∴9的算术平方根是1.
即的算术平方根是1.
故选:D.
【点睛】
考核知识点:算术平方根.理解定义是关键.
6、B
【解析】
根据折叠前后对应角相等可知.
解:设∠ABE=x,
根据折叠前后角相等可知,∠C1BE=∠CBE=50°+x,
所以50°+x+x=90°,
解得x=20°.
故选B.
“点睛”本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.
7、D
【解析】
原式分解因式,判断即可.
【详解】
原式=2(x2﹣2x+1)=2(x﹣1)2。
故选:D.
【点睛】
考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
8、C
【解析】
试题解析:一个关于x的一元一次不等式组的解集在数轴上的表示如图,
则该不等式组的解集是x>1.
故选C.
考点:在数轴上表示不等式的解集.
9、B
【解析】
根据科学记数法的定义,科学记数法的表示形式为a×10 n ,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,等于这个数的整数位数减1.
【详解】
解:85000用科学记数法可表示为8.5×104,
故选:B.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
10、D
【解析】
要求函数的解析式只要求出点的坐标就可以,过点、作轴,轴,分别于、,根据条件得到,得到:,然后用待定系数法即可.
【详解】
过点、作轴,轴,分别于、,
设点的坐标是,则,,
,
,
,
,
,
,
,
,
,,
因为点在反比例函数的图象上,则,
点在反比例函数的图象上,点的坐标是,
.
故选:.
【点睛】
本题考查了反比例函数图象上点的坐标特征,相似三角形的判定与性质,求函数的解析式的问题,一般要转化为求点的坐标的问题,求出图象上点的横纵坐标的积就可以求出反比例函数的解析式.
二、填空题(共7小题,每小题3分,满分21分)
11、5
【解析】
试题分析:中心角的度数=,
考点:正多边形中心角的概念.
12、17
【解析】
先利用完全平方公式展开,然后再求和.
【详解】
根据(x+y)2=25,x2+y2+2xy=25;(x﹣y)2=9, x2+y2-2xy=9,所以x2+y2=17.
【点睛】
(1)完全平方公式:.
(2)平方差公式:(a+b)(a-b)=.
(3)常用等价变形:
,
,
.
13、
【解析】
原式= .
14、.
【解析】
∵点(a,1)与(﹣2,b)关于原点对称,∴b=﹣1,a=2,∴==.故答案为.
考点:关于原点对称的点的坐标.
15、
【解析】
解:连接AG,由旋转变换的性质可知,∠ABG=∠CBE,BA=BG=5,BC=BE,由勾股定理得,CG==4,
∴DG=DC﹣CG=1,则AG==,
∵ ,∠ABG=∠CBE,
∴△ABG∽△CBE,
∴,
解得,CE=,
故答案为.
【点睛】
本题考查的是旋转变换的性质、相似三角形的判定和性质,掌握勾股定理、矩形的性质、旋转变换的性质是解题的关键.
16、1.
【解析】
根据在△ABC中,∠A:∠B:∠C=1:2:3,三角形内角和等于180°可得∠A,∠B,∠C的度数,它的最小边的长是2cm,从而可以求得最大边的长.
【详解】
∵在△ABC中,∠A:∠B:∠C=1:2:3,
∴
∵最小边的长是2cm,
∴a=2.
∴c=2a=1cm.
故答案为:1.
【点睛】
考查含30度角的直角三角形的性质,掌握30度角所对的直角边等于斜边的一半是解题的关键.
17、
【解析】
首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次都摸到白球的情况,再利用概率公式即可求得答案.
【详解】
画树状图得:
∵共有12种等可能的结果,两次都摸到白球的有2种情况,
∴两次都摸到白球的概率是:=.
故答案为:.
【点睛】
本题考查用树状图法求概率,解题的关键是掌握用树状图法求概率.
三、解答题(共7小题,满分69分)
18、(1)第一批T恤衫每件的进价是90元;(2)剩余的T恤衫每件售价至少要80元.
【解析】
(1)设第一批T恤衫每件进价是x元,则第二批每件进价是(x+9)元,再根据等量关系:第二批进的件数=第一批进的件数可得方程;
(2)设剩余的T恤衫每件售价y元,由利润=售价﹣进价,根据第二批的销售利润不低于650元,可列不等式求解.
【详解】
解:(1)设第一批T恤衫每件进价是x元,由题意,得
,
解得x=90
经检验x=90是分式方程的解,符合题意.
答:第一批T恤衫每件的进价是90元.
(2)设剩余的T恤衫每件售价y元.
由(1)知,第二批购进=50件.
由题意,得120×50×+y×50×﹣4950≥650,
解得y≥80.
答:剩余的T恤衫每件售价至少要80元.
19、这项工程的规定时间是83天
【解析】
依据题意列分式方程即可.
【详解】
设这项工程的规定时间为x天,根据题意得 .
解得x=83.
检验:当x=83时,3x≠0.所以x=83是原分式方程的解.
答:这项工程的规定时间是83天.
【点睛】
正确理解题意是解题的关键,注意检验.
20、(1)被随机抽取的学生共有50人;(2)活动数为3项的学生所对应的扇形圆心角为72°,(3)参与了4项或5项活动的学生共有720人.
【解析】
分析:(1)利用活动数为2项的学生的数量以及百分比,即可得到被随机抽取的学生数;
(2)利用活动数为3项的学生数,即可得到对应的扇形圆心角的度数,利用活动数为5项的学生数,即可补全折线统计图;
(3)利用参与了4项或5项活动的学生所占的百分比,即可得到全校参与了4项或5项活动的学生总数.
详解:(1)被随机抽取的学生共有14÷28%=50(人);
(2)活动数为3项的学生所对应的扇形圆心角=×360°=72°,
活动数为5项的学生为:50﹣8﹣14﹣10﹣12=6,
如图所示:
(3)参与了4项或5项活动的学生共有×2000=720(人).
点睛:本题主要考查折线统计图与扇形统计图及概率公式,根据折线统计图和扇形统计图得出解题所需的数据是解题的关键.
21、(1)(2)证明见解析;(3)1.
【解析】
(1)由PD切⊙O于点C,AD与过点C的切线垂直,易证得OC∥AD,继而证得AC平分∠DAB;
(2)由条件可得∠CAO=∠PCB,结合条件可得∠PCF=∠PFC,即可证得PC=PF;
(3)易证△PAC∽△PCB,由相似三角形的性质可得到 ,又因为tan∠ABC= ,所以可得=,进而可得到=,设PC=4k,PB=3k,则在Rt△POC中,利用勾股定理可得PC2+OC2=OP2,进而可建立关于k的方程,解方程求出k的值即可求出PC的长.
【详解】
(1)证明:∵PD切⊙O于点C,
∴OC⊥PD,
又∵AD⊥PD,
∴OC∥AD,
∴∠ACO=∠DAC.
∵OC=OA,
∴∠ACO=∠CAO,
∴∠DAC=∠CAO,
即AC平分∠DAB;
(2)证明:∵AD⊥PD,
∴∠DAC+∠ACD=90°.
又∵AB为⊙O的直径,
∴∠ACB=90°.
∴∠PCB+∠ACD=90°,
∴∠DAC=∠PCB.
又∵∠DAC=∠CAO,
∴∠CAO=∠PCB.
∵CE平分∠ACB,
∴∠ACF=∠BCF,
∴∠CAO+∠ACF=∠PCB+∠BCF,
∴∠PFC=∠PCF,
∴PC=PF;
(3)解:∵∠PAC=∠PCB,∠P=∠P,
∴△PAC∽△PCB,
∴.
又∵tan∠ABC=,
∴,
∴,
设PC=4k,PB=3k,则在Rt△POC中,PO=3k+7,OC=7,
∵PC2+OC2=OP2,
∴(4k)2+72=(3k+7)2,
∴k=6 (k=0不合题意,舍去).
∴PC=4k=4×6=1.
【点睛】
此题考查了和圆有关的综合性题目,用到的知识点有:切线的性质、相似三角形的判定与性质、垂径定理、圆周角定理、勾股定理以及等腰三角形的判定与性质.
22、 (1)200;(2)见解析;(3)126°;(4)240人.
【解析】
(1)根据文史类的人数以及文史类所占的百分比即可求出总人数
(2)根据总人数以及生活类的百分比即可求出生活类的人数以及小说类的人数;
(3)根据小说类的百分比即可求出圆心角的度数;
(4)利用样本中喜欢社科类书籍的百分比来估计总体中的百分比,从而求出喜欢社科类书籍的学生人数
【详解】
(1)∵喜欢文史类的人数为76人,占总人数的38%,
∴此次调查的总人数为:76÷38%=200人,
故答案为200;
(2)∵喜欢生活类书籍的人数占总人数的15%,
∴喜欢生活类书籍的人数为:200×15%=30人,
∴喜欢小说类书籍的人数为:200﹣24﹣76﹣30=70人,
如图所示:
(3)∵喜欢社科类书籍的人数为:24人,
∴喜欢社科类书籍的人数占了总人数的百分比为:×100%=12%,
∴喜欢小说类书籍的人数占了总分数的百分比为:100%﹣15%﹣38%﹣12%=35%,
∴小说类所在圆心角为:360°×35%=126°;
(4)由样本数据可知喜欢“社科类”书籍的学生人数占了总人数的12%,
∴该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数:2000×12%=240人.
【点睛】
此题考查扇形统计图和条形统计图,看懂图中数据是解题关键
23、(1)详见解析;(2)
【解析】
(1)根据正方形的性质和等腰直角三角形的性质以及全等三角形的判定得出△CDF≌△ADE;
(2)连接AC,利用正方形的性质和四边形周长解答即可.
【详解】
(1)证明:∵四边形ABCD是正方形
∴CD=AD,∠ADC=90°,
∵△CDE和△DAF都是等腰直角三角形,
∴FD= AD,DE=CD,∠ADF=∠CDE=45°,
∴∠CDF=∠ADE=135°,FD=DE,
∴△CDF≌△ADE(SAS);
(2)如图,连接AC.
∵四边形ABCD是正方形,
∴∠ACD=∠DAC=45°,
∵△CDF≌△ADE,
∴∠DCF=∠DAE,
∴∠OAC=∠OCA,
∴OA=OC,
∵∠DCE=45°,
∴∠ACE=90°,
∴∠OCE=∠OEC,
∴OC=OE,
∵AF=FD=1,
∴AD=AB=BC=,
∴AC=2,
∴OA+OC=OA+OE=AE= ,
∴四边形ABCO的周长AB+BC+OA+OC= .
【点睛】
本题考查了正方形的性质,全等三角形的判定与性质,等腰直角三角形的性质,难点在于(2)作辅助线构造出全等三角形.
24、(1)y=x2+x﹣(2)存在,(﹣1﹣2,2)或(﹣1+2,2)(3)点F的坐标为(﹣1,2)、(3,﹣2)、(﹣5,﹣2),且平行四边形的面积为 1
【解析】
(1)设抛物线解析式为y=ax2+bx+c,把(﹣3,0),(1,0),(0,)代入求出a、b、c的值即可;(2)根据抛物线解析式可知顶点P的坐标,由两个三角形的底相同可得要使两个三角形面积相等则高相等,根据P点坐标可知E点纵坐标,代入解析式求出x的值即可;(3)分别讨论AB为边、AB为对角线两种情况求出F点坐标并求出面积即可;
【详解】
(1)设抛物线解析式为y=ax2+bx+c,将(﹣3,0),(1,0),(0,)代入抛物线解析式得,
解得:a=,b=1,c=﹣
∴抛物线解析式:y=x2+x﹣
(2)存在.
∵y=x2+x﹣=(x+1)2﹣2
∴P点坐标为(﹣1,﹣2)
∵△ABP的面积等于△ABE的面积,
∴点E到AB的距离等于2,
设E(a,2),
∴a2+a﹣=2
解得a1=﹣1﹣2,a2=﹣1+2
∴符合条件的点E的坐标为(﹣1﹣2,2)或(﹣1+2,2)
(3)∵点A(﹣3,0),点B(1,0),
∴AB=4
若AB为边,且以A、B、P、F为顶点的四边形为平行四边形
∴AB∥PF,AB=PF=4
∵点P坐标(﹣1,﹣2)
∴点F坐标为(3,﹣2),(﹣5,﹣2)
∴平行四边形的面积=4×2=1
若AB为对角线,以A、B、P、F为顶点的四边形为平行四边形
∴AB与PF互相平分
设点F(x,y)且点A(﹣3,0),点B(1,0),点P(﹣1,﹣2)
∴ ,
∴x=﹣1,y=2
∴点F(﹣1,2)
∴平行四边形的面积=×4×4=1
综上所述:点F的坐标为(﹣1,2)、(3,﹣2)、(﹣5,﹣2),且平行四边形的面积为1.
【点睛】
本题考查待定系数法求二次函数解析式及二次函数的几何应用,分类讨论并熟练掌握数形结合的数学思想方法是解题关键.
相关试卷
这是一份2024年江苏省泰州市靖江市中考二模数学试题(原卷版+解析版),文件包含2024年江苏省泰州市靖江市中考二模数学试题原卷版docx、2024年江苏省泰州市靖江市中考二模数学试题解析版docx等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。
这是一份2024年江苏省泰州市靖江市中考二模数学试题,共6页。
这是一份04,2024年江苏省泰州市靖江市中考一模数学试题,共14页。试卷主要包含了2%,增速居世界主要经济体前列, 8, 11等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)