江苏省泰州市兴化市重点名校2022年中考数学全真模拟试题含解析
展开2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(共10小题,每小题3分,共30分)
1.下列命题是真命题的个数有( )
①菱形的对角线互相垂直;
②平分弦的直径垂直于弦;
③若点(5,﹣5)是反比例函数y=图象上的一点,则k=﹣25;
④方程2x﹣1=3x﹣2的解,可看作直线y=2x﹣1与直线y=3x﹣2交点的横坐标.
A.1个 B.2个 C.3个 D.4个
2.某市今年1月份某一天的最高气温是3℃,最低气温是—4℃,那么这一天的最高气温比最低气温高
A.—7℃ B.7℃ C.—1℃ D.1℃
3.下列说法不正确的是( )
A.选举中,人们通常最关心的数据是众数
B.从1,2,3,4,5中随机抽取一个数,取得奇数的可能性比较大
C.甲、乙两人在相同条件下各射击10次,他们的平均成绩相同,方差分别为S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定
D.数据3,5,4,1,﹣2的中位数是4
4.如图,数轴A、B上两点分别对应实数a、b,则下列结论正确的是( )
A.a+b>0 B.ab >0 C. D.
5.今年我市计划扩大城区绿地面积,现有一块长方形绿地,它的短边长为60m,若将短边增长到长边相等(长边不变),使扩大后的棣地的形状是正方形,则扩大后的绿地面积比原来增加1600,设扩大后的正方形绿地边长为xm,下面所列方程正确的是( )
A.x(x-60)=1600
B.x(x+60)=1600
C.60(x+60)=1600
D.60(x-60)=1600
6.如图,A、B、C、D四个点均在⊙O上,∠AOD=70°,AO∥DC,则∠B的度数为( )
A.40° B.45° C.50° D.55°
7.实数a,b在数轴上的位置如图所示,以下说法正确的是( )
A.a+b=0 B.b<a C.ab>0 D.|b|<|a|
8.一个圆锥的侧面积是12π,它的底面半径是3,则它的母线长等于( )
A.2 B.3 C.4 D.6
9.随机掷一枚均匀的硬币两次,至少有一次正面朝上的概率为( )
A. B. C. D.
10.如图,△ABC是⊙O的内接三角形,AD⊥BC于D点,且AC=5,CD=3,BD=4,则⊙O的直径等于( )
A.5 B. C. D.7
二、填空题(本大题共6个小题,每小题3分,共18分)
11.2017年7月27日上映的国产电影《战狼2》,风靡全国.剧中“犯我中华者,虽远必诛”鼓舞人心,彰显了祖国的强大实力与影响力,累计票房56.8亿元.将56.8亿元用科学记数法表示为_____元.
12.两圆内切,其中一个圆的半径长为6,圆心距等于2,那么另一个圆的半径长等于__.
13.已知圆锥的底面圆半径为3cm,高为4cm,则圆锥的侧面积是________cm2.
14.如图,在△ABC中,∠ACB=90°,AC=BC=3,将△ABC折叠,使点A落在BC边上的点D处,EF为折痕,若AE=2,则sin∠BFD的值为_____.
15.正多边形的一个外角是60°,边长是2,则这个正多边形的面积为___________ .
16.如图,AB是圆O的直径,AC是圆O的弦,AB=2,∠BAC=30°.在图中画出弦AD,使AD=1,则∠CAD的度数为_____°.
三、解答题(共8题,共72分)
17.(8分)如图,一次函数y=-x+5的图象与反比例函数y= (k≠0)在第一象限的图象交于A(1,n)和B两点.求反比例函数的解析式;在第一象限内,当一次函数y=-x+5的值大于反比例函数y= (k≠0)的值时,写出自变量x的取值范围.
18.(8分)若两个不重合的二次函数图象关于轴对称,则称这两个二次函数为“关于轴对称的二次函数”.
(1)请写出两个“关于轴对称的二次函数”;
(2)已知两个二次函数和是“关于轴对称的二次函数”,求函数的顶点坐标(用含的式子表示).
19.(8分)先化简,再求值:,其中m=2.
20.(8分)如图,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.
(1)求证:CD是⊙O的切线;
(2)过点B作⊙O的切线交CD的延长线于点E,BC=6,.求BE的长.
21.(8分)新春佳节,电子鞭炮因其安全、无污染开始走俏.某商店经销一种电子鞭炮,已知这种电子鞭炮的成本价为每盒80元,市场调查发现,该种电子鞭炮每天的销售量y(盒)与销售单价x(元)有如下关系:y=﹣2x+320(80≤x≤160).设这种电子鞭炮每天的销售利润为w元.
(1)求w与x之间的函数关系式;
(2)该种电子鞭炮销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?
(3)该商店销售这种电子鞭炮要想每天获得2400元的销售利润,又想卖得快.那么销售单价应定为多少元?
22.(10分)为响应国家全民阅读的号召,某社区鼓励居民到社区阅览室借阅读书,并统计每年的借阅人数和图书借阅总量(单位:本),该阅览室在2014年图书借阅总量是7500本,2016年图书借阅总量是10800本.
(1)求该社区的图书借阅总量从2014年至2016年的年平均增长率;
(2)已知2016年该社区居民借阅图书人数有1350人,预计2017年达到1440人,如果2016年至2017年图书借阅总量的增长率不低于2014年至2016年的年平均增长率,那么2017年的人均借阅量比2016年增长a%,求a的值至少是多少?
23.(12分)在数学课上,老师提出如下问题:
小楠同学的作法如下:
老师说:“小楠的作法正确.”
请回答:小楠的作图依据是______________________________________________.
24.如图,在平面直角坐标系中,O为坐标原点,△AOB是等腰直角三角形,∠AOB=90°,点A(2,1).
(1)求点B的坐标;
(2)求经过A、O、B三点的抛物线的函数表达式;
(3)在(2)所求的抛物线上,是否存在一点P,使四边形ABOP的面积最大?若存在,求出点P的坐标;若不存在,请说明理由.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
根据菱形的性质、垂径定理、反比例函数和一次函数进行判断即可.
【详解】
解:①菱形的对角线互相垂直是真命题;
②平分弦(非直径)的直径垂直于弦,是假命题;
③若点(5,-5)是反比例函数y=图象上的一点,则k=-25,是真命题;
④方程2x-1=3x-2的解,可看作直线y=2x-1与直线y=3x-2交点的横坐标,是真命题;
故选C.
【点睛】
本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.一些命题的正确性是用推理证实的,这样的真命题叫做定理.
2、B
【解析】
求最高气温比最低气温高多少度,即是求最高气温与最低气温的差,这个实际问题可转化为减法运算,列算式计算即可.
【详解】
3-(-4)=3+4=7℃.
故选B.
3、D
【解析】
试题分析:A、选举中,人们通常最关心的数据为出现次数最多的数,所以A选项的说法正确;
B、从1,2,3,4,5中随机抽取一个数,由于奇数由3个,而偶数有2个,则取得奇数的可能性比较大,所以B选项的说法正确;
C、甲、乙两人在相同条件下各射击10次,他们的平均成绩相同,方差分别为S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定,所以C选项的说法正确;
D、数据3,5,4,1,﹣2由小到大排列为﹣2,1,3,4,5,所以中位数是3,所以D选项的说法错误.
故选D.
考点:随机事件发生的可能性(概率)的计算方法
4、C
【解析】
本题要先观察a,b在数轴上的位置,得b<-1<0<a<1,然后对四个选项逐一分析.
【详解】
A、因为b<-1<0<a<1,所以|b|>|a|,所以a+b<0,故选项A错误;
B、因为b<0<a,所以ab<0,故选项B错误;
C、因为b<-1<0<a<1,所以+>0,故选项C正确;
D、因为b<-1<0<a<1,所以->0,故选项D错误.
故选C.
【点睛】
本题考查了实数与数轴的对应关系,数轴上右边的数总是大于左边的数.
5、A
【解析】
试题分析:根据题意可得扩建的部分相当于一个长方形,这个长方形的长和宽分别为x米和(x-60)米,根据长方形的面积计算法则列出方程.
考点:一元二次方程的应用.
6、D
【解析】
试题分析:如图,
连接OC,
∵AO∥DC,
∴∠ODC=∠AOD=70°,
∵OD=OC,
∴∠ODC=∠OCD=70°,
∴∠COD=40°,
∴∠AOC=110°,
∴∠B=∠AOC=55°.
故选D.
考点:1、平行线的性质;2、圆周角定理;3等腰三角形的性质
7、D
【解析】
根据图形可知,a是一个负数,并且它的绝对是大于1小于2,b是一个正数,并且它的绝对值是大于0小于1,即可得出|b|<|a|.
【详解】
A选项:由图中信息可知,实数a为负数,实数b为正数,但表示它们的点到原点的距离不相等,所以它们不互为相反数,和不为0,故A错误;
B选项:由图中信息可知,实数a为负数,实数b为正数,而正数都大于负数,故B错误;
C选项:由图中信息可知,实数a为负数,实数b为正数,而异号两数相乘积为负,负数都小于0,故C错误;
D选项:由图中信息可知,表示实数a的点到原点的距离大于表示实数b的点到原点的距离,而在数轴上表示一个数的点到原点的距离越远其绝对值越大,故D正确.
∴ 选D.
8、C
【解析】
设母线长为R,底面半径是3cm,则底面周长=6π,侧面积=3πR=12π,
∴R=4cm.
故选C.
9、D
【解析】
先求出两次掷一枚硬币落地后朝上的面的所有情况,再根据概率公式求解.
【详解】
随机掷一枚均匀的硬币两次,落地后情况如下:
至少有一次正面朝上的概率是,
故选:D.
【点睛】
本题考查了随机事件的概率,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率.
10、A
【解析】
连接AO并延长到E,连接BE.设AE=2R,则∠ABE=90°,∠AEB=∠ACB,∠ADC=90°,利用勾股定理求得AD=,, 再证明Rt△ABE∽Rt△ADC,得到 ,即2R= = .
【详解】
解:如图,
连接AO并延长到E,连接BE.设AE=2R,则
∠ABE=90°,∠AEB=∠ACB;
∵AD⊥BC于D点,AC=5,DC=3,
∴∠ADC=90°,
∴AD=,
∴
在Rt△ABE与Rt△ADC中,
∠ABE=∠ADC=90°,∠AEB=∠ACB,
∴Rt△ABE∽Rt△ADC,
∴,
即2R= = ;
∴⊙O的直径等于.
故答案选:A.
【点睛】
本题主要考查了圆周角定理、勾股定理,解题的关键是掌握辅助线的作法.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、5.68×109
【解析】
试题解析:科学记数法的表示形式为的形式,其中 为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值>1时,是正数;当原数的绝对值<1时,是负数.
56.8亿
故答案为
12、4或1
【解析】
∵两圆内切,一个圆的半径是6,圆心距是2,
∴另一个圆的半径=6-2=4;
或另一个圆的半径=6+2=1,
故答案为4或1.
【点睛】本题考查了根据两圆位置关系来求圆的半径的方法.注意圆的半径是6,要分大圆和小圆两种情况讨论.
13、15π
【解析】
【分析】设圆锥母线长为l,根据勾股定理求出母线长,再根据圆锥侧面积公式即可得出答案.
【详解】设圆锥母线长为l,∵r=3,h=4,
∴母线l=,
∴S侧=×2πr×5=×2π×3×5=15π,
故答案为15π.
【点睛】本题考查了圆锥的侧面积,熟知圆锥的母线长、底面半径、圆锥的高以及圆锥的侧面积公式是解题的关键.
14、
【解析】
分析:过点D作DGAB于点G.根据折叠性质,可得AE=DE=2,AF=DF,CE=1,
在Rt△DCE中,由勾股定理求得,所以DB=;在Rt△ABC中,由勾股定理得;在Rt△DGB中,由锐角三角函数求得,;
设AF=DF=x,则FG= ,在Rt△DFG中,根据勾股定理得方程=,解得,从而求得.的值
详解:
如图所示,过点D作DGAB于点G.
根据折叠性质,可知△AEF△DEF,
∴AE=DE=2,AF=DF,CE=AC-AE=1,
在Rt△DCE中,由勾股定理得,
∴DB=;
在Rt△ABC中,由勾股定理得;
在Rt△DGB中,,;
设AF=DF=x,得FG=AB-AF-GB=,
在Rt△DFG中,,
即=,
解得,
∴==.
故答案为.
点睛:主要考查了翻折变换的性质、勾股定理、锐角三件函数的定义;解题的关键是灵活运用折叠的性质、勾股定理、锐角三角函数的定义等知识来解决问题.
15、6
【解析】
多边形的外角和等于360°,因为所给多边形的每个外角均相等,据此即可求得正多边形的边数,进而求解.
【详解】
正多边形的边数是:360°÷60°=6.
正六边形的边长为2cm,
由于正六边形可分成六个全等的等边三角形,
且等边三角形的边长与正六边形的边长相等,
所以正六边形的面积.
故答案是:.
【点睛】
本题考查了正多边形的外角和以及正多边形的计算,正六边形可分成六个全等的等边三角形,转化为等边三角形的计算.
16、30或1.
【解析】
根据题意作图,由AB是圆O的直径,可得∠ADB=∠AD′B=1°,继而可求得∠DAB的度数,则可求得答案.
【详解】
解:如图,∵AB是圆O的直径,
∴∠ADB=∠AD′B=1°,
∵AD=AD′=1,AB=2,
∴cos∠DAB=cosD′AB=,
∴∠DAB=∠D′AB=60°,
∵∠CAB=30°,
∴∠CAD=30°,∠CAD′=1°.
∴∠CAD的度数为:30°或1°.
故答案为30或1.
【点睛】
本题考查圆周角定理;含30度角的直角三角形.
三、解答题(共8题,共72分)
17、(1);(2)1<x<1.
【解析】
(1)将点A的坐标(1,1)代入,即可求出反比例函数的解析式;
(2)一次函数y=-x+5的值大于反比例函数y=,即反比例函数的图象在一次函数的图象的下方时自变量的取值范围即可.
【详解】
解:(1)∵一次函数y=﹣x+5的图象过点A(1,n),
∴n=﹣1+5,解得:n=1,
∴点A的坐标为(1,1).
∵反比例函数y=(k≠0)过点A(1,1),
∴k=1×1=1,
∴反比例函数的解析式为y=.
联立,解得:或,
∴点B的坐标为(1,1).
(2)观察函数图象,发现:
当1<x<1.时,反比例函数图象在一次函数图象下方,
∴当一次函数y=﹣x+5的值大于反比例函数y=(k≠0)的值时,x的取值范围为1<x<1.
【点睛】
本题考查了反比例函数和一次函数的交点问题,以及用待定系数法求反比例函数和一次函数的解析式,是基础知识要熟练掌握.解题的关键是:(1)联立两函数解析式成二元一次方程组;(2)求出点C的坐标;(3)根据函数图象上下关系结合交点横坐标解决不等式.本题属于基础题,难度不大,解决该题型题目时,联立两函数解析式成方程组,解方程组求出交点的坐标是关键.
18、(1)任意写出两个符合题意的答案,如:;(2),顶点坐标为
【解析】
(1)根据关于y轴对称的二次函数的特点,只要两个函数的顶点坐标根据y轴对称即可;
(2)根据函数的特点得出a=m,--=0, ,进一步得出m=a,n=-b,p=c,从而得到y1+y2=2ax2+2c,根据关系式即可得到顶点坐标.
【详解】
解:(1)答案不唯一,如;
(2)∵y1=ax2+bx+c和y2=mx2+nx+p是“关于y轴对称的二次函数”,
即a=m,--=0,,
整理得m=a,n=-b,p=c,
则y1+y2=ax2+bx+c+ax2-bx+c=2ax2+2c,
∴函数y1+y2的顶点坐标为(0,2c).
【点睛】
本题考查了二次函数的图象与几何变换,得出变换的规律是解题的关键.
19、,原式.
【解析】
原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把m的值代入计算即可求出值.
【详解】
原式,
当m=2时,原式.
【点睛】
此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.
20、(1)证明见解析;(2).
【解析】
试题分析:连接OD.根据圆周角定理得到∠ADO+∠ODB=90°,
而∠CDA=∠CBD,∠CBD=∠BDO.于是∠ADO+∠CDA=90°,可以证明是切线.
根据已知条件得到由相似三角形的性质得到 求得 由切线的性质得到根据勾股定理列方程即可得到结论.
试题解析:(1)连接OD.
∵OB=OD,
∴∠OBD=∠BDO.
∵∠CDA=∠CBD,
∴∠CDA=∠ODB.
又∵AB是⊙O的直径,∴∠ADB=90°,
∴∠ADO+∠ODB=90°,
∴∠ADO+∠CDA=90°,即∠CDO=90°,
∴OD⊥CD.
∵OD是⊙O的半径,
∴CD是⊙O的切线;
(2)∵∠C=∠C,∠CDA=∠CBD,∴△CDA∽△CBD,
BC=6,∴CD=4.
∵CE,BE是⊙O的切线,
∴BE=DE,BE⊥BC,
∴BE2+BC2=EC2,
即BE2+62=(4+BE)2,
解得BE=.
21、(1)w=﹣2x2+480x﹣25600;(2)销售单价定为120元时,每天销售利润最大,最大销售利润1元(3)销售单价应定为100元
【解析】
(1)用每件的利润乘以销售量即可得到每天的销售利润,即 然后化为一般式即可;
(2)把(1)中的解析式进行配方得到顶点式然后根据二次函数的最值问题求解;
(3)求所对应的自变量的值,即解方程然后检验即可.
【详解】
(1)
w与x的函数关系式为:
(2)
∴当时,w有最大值.w最大值为1.
答:销售单价定为120元时,每天销售利润最大,最大销售利润1元.
(3)当时,
解得:
∵想卖得快,
不符合题意,应舍去.
答:销售单价应定为100元.
22、(1)20%;(2)12.1.
【解析】
试题分析:(1)经过两次增长,求年平均增长率的问题,应该明确原来的基数,增长后的结果.设这两年的年平均增长率为x,则经过两次增长以后图书馆有书7100(1+x)2本,即可列方程求解;
(2)先求出2017年图书借阅总量的最小值,再求出2016年的人均借阅量,2017年的人均借阅量,进一步求得a的值至少是多少.
试题解析:(1)设该社区的图书借阅总量从2014年至2016年的年平均增长率为x,根据题意得
7100(1+x)2=10800,即(1+x)2=1.44,解得:x1=0.2,x2=﹣2.2(舍去).
答:该社区的图书借阅总量从2014年至2016年的年平均增长率为20%;
(2)10800(1+0.2)=12960(本)
10800÷1310=8(本)
12960÷1440=9(本)
(9﹣8)÷8×100%=12.1%.
故a的值至少是12.1.
考点:一元二次方程的应用;一元一次不等式的应用;最值问题;增长率问题.
23、两组对边分别相等的四边形是平行四边形;平行四边形的对角线互相平分;两点确定一条直线.
【解析】
根据对角线互相平分的四边形是平行四边形可判断四边形ABCP为平行四边形,再根据平行四边形的性质:对角线互相平分即可得到BD=CD,由此可得到小楠的作图依据.
【详解】
解:由作图的步骤可知平行四边形可判断四边形ABCP为平行四边形,再根据平行四边形的
性质:对角线互相平分即可得到BD=CD,
所以小楠的作图依据是:两组对边分别相等的四边形是平行四边形;平行四边形的对角线互
相平分;两点确定一条直线.
故答案为:两组对边分别相等的四边形是平行四边形;平行四边形的对角线互相平分;两点
确定一条直线.
【点睛】
本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了平行四边形的判定和性质.
24、 (1) B(-1.2);(2) y=;(3)见解析.
【解析】
(1)过A作AC⊥x轴于点C,过B作BD⊥x轴于点D,则可证明△ACO≌△ODB,则可求得OD和BD的长,可求得B点坐标;
(2)根据A、B、O三点的坐标,利用待定系数法可求得抛物线解析式;
(3)由四边形ABOP可知点P在线段AO的下方,过P作PE∥y轴交线段OA于点E,可求得直线OA解析式,设出P点坐标,则可表示出E点坐标,可表示出PE的长,进一步表示出△POA的面积,则可得到四边形ABOP的面积,再利用二次函数的性质可求得其面积最大时P点的坐标.
【详解】
(1)如图1,过A作AC⊥x轴于点C,过B作BD⊥x轴于点D,
∵△AOB为等腰三角形,
∴AO=BO,
∵∠AOB=90°,
∴∠AOC+∠DOB=∠DOB+∠OBD=90°,
∴∠AOC=∠OBD,
在△ACO和△ODB中
∴△ACO≌△ODB(AAS),
∵A(2,1),
∴OD=AC=1,BD=OC=2,
∴B(-1,2);
(2)∵抛物线过O点,
∴可设抛物线解析式为y=ax2+bx,
把A、B两点坐标代入可得,解得,
∴经过A、B、O原点的抛物线解析式为y=x2-x;
(3)∵四边形ABOP,
∴可知点P在线段OA的下方,
过P作PE∥y轴交AO于点E,如图2,
设直线AO解析式为y=kx,
∵A(2,1),
∴k=,
∴直线AO解析式为y=x,
设P点坐标为(t,t2-t),则E(t,t),
∴PE=t-(t2-t)=-t2+t=-(t-1)2+,
∴S△AOP=PE×2=PE═-(t-1)2+,
由A(2,1)可求得OA=OB=,
∴S△AOB=AO•BO=,
∴S四边形ABOP=S△AOB+S△AOP=-(t-1)2++=,
∵-<0,
∴当t=1时,四边形ABOP的面积最大,此时P点坐标为(1,-),
综上可知存在使四边形ABOP的面积最大的点P,其坐标为(1,-).
【点睛】
本题为二次函数的综合应用,主要涉及待定系数法、等腰直角三角形的性质、全等三角形的判定和性质、三角形的面积以及方程思想等知识.在(1)中构造三角形全等是解题的关键,在(2)中注意待定系数法的应用,在(3)中用t表示出四边形ABOP的面积是解题的关键.本题考查知识点较多,综合性较强,难度适中.
江苏省盱眙县重点名校2021-2022学年中考数学全真模拟试题含解析: 这是一份江苏省盱眙县重点名校2021-2022学年中考数学全真模拟试题含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,已知抛物线y=x2-2mx-4等内容,欢迎下载使用。
2021-2022学年江苏省海门市重点达标名校中考数学全真模拟试题含解析: 这是一份2021-2022学年江苏省海门市重点达标名校中考数学全真模拟试题含解析,共22页。试卷主要包含了考生要认真填写考场号和座位序号,下列说法正确的是,下列运算正确的是等内容,欢迎下载使用。
江苏省泰州市重点中学2021-2022学年中考数学全真模拟试卷含解析: 这是一份江苏省泰州市重点中学2021-2022学年中考数学全真模拟试卷含解析,共22页。试卷主要包含了下列二次根式,最简二次根式是等内容,欢迎下载使用。