搜索
    上传资料 赚现金
    英语朗读宝

    江苏省无锡市积余教育集团2021-2022学年中考试题猜想数学试卷含解析

    江苏省无锡市积余教育集团2021-2022学年中考试题猜想数学试卷含解析第1页
    江苏省无锡市积余教育集团2021-2022学年中考试题猜想数学试卷含解析第2页
    江苏省无锡市积余教育集团2021-2022学年中考试题猜想数学试卷含解析第3页
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省无锡市积余教育集团2021-2022学年中考试题猜想数学试卷含解析

    展开

    这是一份江苏省无锡市积余教育集团2021-2022学年中考试题猜想数学试卷含解析,共26页。试卷主要包含了化简的结果为等内容,欢迎下载使用。
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.已知二次函数的图象如图所示,则下列说法正确的是( )
    A.<0B.<0C.<0D.<0
    2.下列运算中,正确的是( )
    A.(a3)2=a5B.(﹣x)2÷x=﹣x
    C.a3(﹣a)2=﹣a5D.(﹣2x2)3=﹣8x6
    3.济南市某天的气温:-5~8℃,则当天最高与最低的温差为( )
    A.13B.3C.-13D.-3
    4.下表是某校合唱团成员的年龄分布.
    对于不同的x,下列关于年龄的统计量不会发生改变的是( )
    A.众数、中位数B.平均数、中位数C.平均数、方差D.中位数、方差
    5.下列四个几何体中,主视图与左视图相同的几何体有( )
    A.1个B.2个C.3个D.4个
    6.如图,点C、D是线段AB上的两点,点D是线段AC的中点.若AB=10cm,BC=4cm,则线段DB的长等于( )
    A.2cmB.3cmC.6cmD.7cm
    7.已知△ABC中,∠BAC=90°,用尺规过点A作一条直线,使其将△ABC分成两个相似的三角形,其作法不正确的是( )
    A. B.
    C. D.
    8.化简的结果为( )
    A.﹣1B.1C.D.
    9.数轴上有A,B,C,D四个点,其中绝对值大于2的点是( )
    A.点AB.点BC.点CD.点D
    10.如图,在△ABC中,点D在AB边上,DE∥BC,与边AC交于点E,连结BE,记△ADE,△BCE的面积分别为S1,S2,( )
    A.若2AD>AB,则3S1>2S2B.若2AD>AB,则3S1<2S2
    C.若2AD<AB,则3S1>2S2D.若2AD<AB,则3S1<2S2
    二、填空题(共7小题,每小题3分,满分21分)
    11.如图,在矩形ABCD中,点E是边CD的中点,将△ADE沿AE折叠后得到△AFE,且点F在矩形ABCD内部.将AF延长交边BC于点G.若,则 (用含k的代数式表示).
    12.如图,P是⊙O的直径AB延长线上一点,PC切⊙O于点C,PC=6,BC:AC=1:2,则AB的长为_____.
    13.计算的结果等于______________________.
    14.同学们设计了一个重复抛掷的实验:全班48人分为8个小组,每组抛掷同一型号的一枚瓶盖300次,并记录盖面朝上的次数,下表是依次累计各小组的实验结果.
    根据实验,你认为这一型号的瓶盖盖面朝上的概率为____,理由是:____.
    15.如图,要使△ABC∽△ACD,需补充的条件是_____.(只要写出一种)
    16.关于 x 的方程 ax=x+2(a1) 的解是________.
    17.如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为_____.
    三、解答题(共7小题,满分69分)
    18.(10分)如图,AD是△ABC的中线,过点C作直线CF∥AD.
    (问题)如图①,过点D作直线DG∥AB交直线CF于点E,连结AE,求证:AB=DE.
    (探究)如图②,在线段AD上任取一点P,过点P作直线PG∥AB交直线CF于点E,连结AE、BP,探究四边形ABPE是哪类特殊四边形并加以证明.
    (应用)在探究的条件下,设PE交AC于点M.若点P是AD的中点,且△APM的面积为1,直接写出四边形ABPE的面积.
    19.(5分)先化简,再求值:,其中x=﹣1.
    20.(8分)如图,已知,等腰Rt△OAB中,∠AOB=90°,等腰Rt△EOF中,∠EOF=90°,连结AE、BF.
    求证:(1)AE=BF;(2)AE⊥BF.
    21.(10分)如图,某校准备给长12米,宽8米的矩形室内场地进行地面装饰,现将其划分为区域Ⅰ(菱形),区域Ⅱ(4个全等的直角三角形),剩余空白部分记为区域Ⅲ;点为矩形和菱形的对称中心,,,,为了美观,要求区域Ⅱ的面积不超过矩形面积的,若设米.
    (1)当时,求区域Ⅱ的面积.计划在区域Ⅰ,Ⅱ分别铺设甲,乙两款不同的深色瓷砖,区域Ⅲ铺设丙款白色瓷砖,
    ①在相同光照条件下,当场地内白色区域的面积越大,室内光线亮度越好.当为多少时,室内光线亮度最好,并求此时白色区域的面积.
    ②三种瓷砖的单价列表如下,均为正整数,若当米时,购买三款瓷砖的总费用最少,且最少费用为7200元,此时__________,__________.
    22.(10分)如图1,矩形ABCD中,E是AD的中点,以点E直角顶点的直角三角形EFG的两边EF,EG分别过点B,C,∠F=30°.
    (1)求证:BE=CE
    (2)将△EFG绕点E按顺时针方向旋转,当旋转到EF与AD重合时停止转动.若EF,EG分别与AB,BC相交于点M,N.(如图2)
    ①求证:△BEM≌△CEN;
    ②若AB=2,求△BMN面积的最大值;
    ③当旋转停止时,点B恰好在FG上(如图3),求sin∠EBG的值.
    23.(12分)已知抛物线经过点,.把抛物线与线段围成的封闭图形记作.
    (1)求此抛物线的解析式;
    (2)点为图形中的抛物线上一点,且点的横坐标为,过点作轴,交线段于点.当为等腰直角三角形时,求的值;
    (3)点是直线上一点,且点的横坐标为,以线段为边作正方形,且使正方形与图形在直线的同侧,当,两点中只有一个点在图形的内部时,请直接写出的取值范围.
    24.(14分)学习了正多边形之后,小马同学发现利用对称、旋转等方法可以计算等分正多边形面积的方案.
    (1)请聪明的你将下面图①、图②、图③的等边三角形分别割成2个、3个、4个全等三角形;
    (2)如图④,等边△ABC边长AB=4,点O为它的外心,点M、N分别为边AB、BC上的动点(不与端点重合),且∠MON=120°,若四边形BMON的面积为s,它的周长记为l,求最小值;
    (3)如图⑤,等边△ABC的边长AB=4,点P为边CA延长线上一点,点Q为边AB延长线上一点,点D为BC边中点,且∠PDQ=120°,若PA=x,请用含x的代数式表示△BDQ的面积S△BDQ.
    参考答案
    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、B
    【解析】
    根据抛物线的开口方向确定a,根据抛物线与y轴的交点确定c,根据对称轴确定b,根据抛物线与x轴的交点确定b2-4ac,根据x=1时,y>0,确定a+b+c的符号.
    【详解】
    解:∵抛物线开口向上,
    ∴a>0,
    ∵抛物线交于y轴的正半轴,
    ∴c>0,
    ∴ac>0,A错误;
    ∵->0,a>0,
    ∴b<0,∴B正确;
    ∵抛物线与x轴有两个交点,
    ∴b2-4ac>0,C错误;
    当x=1时,y>0,
    ∴a+b+c>0,D错误;
    故选B.
    【点睛】
    本题考查的是二次函数图象与系数的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.
    2、D
    【解析】
    根据同底数幂的除法、乘法的运算方法,幂的乘方与积的乘方的运算方法,以及单项式乘单项式的方法,逐项判定即可.
    【详解】
    ∵(a3)2=a6,
    ∴选项A不符合题意;
    ∵(-x)2÷x=x,
    ∴选项B不符合题意;
    ∵a3(-a)2=a5,
    ∴选项C不符合题意;
    ∵(-2x2)3=-8x6,
    ∴选项D符合题意.
    故选D.
    【点睛】
    此题主要考查了同底数幂的除法、乘法的运算方法,幂的乘方与积的乘方的运算方法,以及单项式乘单项式的方法,要熟练掌握.
    3、A
    【解析】
    由题意可知,当天最高温与最低温的温差为8-(-5)=13℃,故选A.
    4、A
    【解析】
    由频数分布表可知后两组的频数和为10,即可得知总人数,结合前两组的频数知出现次数最多的数据及第15、16个数据的平均数,可得答案.
    【详解】
    由题中表格可知,年龄为15岁与年龄为16岁的频数和为,则总人数为,故该组数据的众数为14岁,中位数为(岁),所以对于不同的x,关于年龄的统计量不会发生改变的是众数和中位数,故选A.
    【点睛】
    本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键.
    5、D
    【解析】
    解:①正方体的主视图与左视图都是正方形;
    ②球的主视图与左视图都是圆;
    ③圆锥主视图与左视图都是三角形;
    ④圆柱的主视图和左视图都是长方形;
    故选D.
    6、D
    【解析】
    【分析】先求AC,再根据点D是线段AC的中点,求出CD,再求BD.
    【详解】因为,AB=10cm,BC=4cm,
    所以,AC=AB-BC=10-4=6(cm)
    因为,点D是线段AC的中点,
    所以,CD=3cm,
    所以,BD=BC+CD=3+4=7(cm)
    故选D
    【点睛】本题考核知识点:线段的中点,和差.解题关键点:利用线段的中点求出线段长度.
    7、D
    【解析】
    分析:根据过直线外一点作这条直线的垂线,及线段中垂线的做法,圆周角定理,分别作出直角三角形斜边上的垂线,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;即可作出判断.
    详解:A、在角∠BAC内作作∠CAD=∠B,交BC于点D,根据余角的定义及等量代换得出∠B+∠BAD=90°,进而得出AD⊥BC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;A不符合题意;
    B、以点A为圆心,略小于AB的长为半径,画弧,交线段BC两点,再分别以这两点为圆心,大于两交点间的距离为半径画弧,两弧相交于一点,过这一点与A点作直线,该直线是BC的垂线;根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形是彼此相似的;B不符合题意;
    C、以AB为直径作圆,该圆交BC于点D,根据圆周角定理,过AD两点作直线该直线垂直于BC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;C不符合题意;
    D、以点B为圆心BA的长为半径画弧,交BC于点E,再以E点为圆心,AB的长为半径画弧,在BC的另一侧交前弧于一点,过这一点及A点作直线,该直线不一定是BE的垂线;从而就不能保证两个小三角形相似;D符合题意;
    故选D.
    点睛:此题主要考查了相似变换以及相似三角形的判定,正确掌握相似三角形的判定方法是解题关键.
    8、B
    【解析】
    先把分式进行通分,把异分母分式化为同分母分式,再把分子相加,即可求出答案.
    【详解】
    解:.
    故选B.
    9、A
    【解析】
    根据绝对值的含义和求法,判断出绝对值等于2的数是﹣2和2,据此判断出绝对值等于2的点是哪个点即可.
    【详解】
    解:∵绝对值等于2的数是﹣2和2,
    ∴绝对值等于2的点是点A.
    故选A.
    【点睛】
    此题主要考查了绝对值的含义和求法,要熟练掌握,解答此题的关键要明确:①互为相反数的两个数绝对值相等;②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.③有理数的绝对值都是非负数.
    10、D
    【解析】
    根据题意判定△ADE∽△ABC,由相似三角形的面积之比等于相似比的平方解答.
    【详解】
    ∵如图,在△ABC中,DE∥BC,
    ∴△ADE∽△ABC,
    ∴,
    ∴若1AD>AB,即时,,
    此时3S1>S1+S△BDE,而S1+S△BDE<1S1.但是不能确定3S1与1S1的大小,
    故选项A不符合题意,选项B不符合题意.
    若1AD<AB,即时,,
    此时3S1<S1+S△BDE<1S1,
    故选项C不符合题意,选项D符合题意.
    故选D.
    【点睛】
    考查了相似三角形的判定与性质,三角形相似的判定一直是中考考查的热点之一,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.
    二、填空题(共7小题,每小题3分,满分21分)
    11、。
    【解析】
    试题分析:如图,连接EG,
    ∵,∴设,则。
    ∵点E是边CD的中点,∴。
    ∵△ADE沿AE折叠后得到△AFE,
    ∴。
    易证△EFG≌△ECG(HL),∴。∴。
    ∴在Rt△ABG中,由勾股定理得: ,即。
    ∴。
    ∴(只取正值)。
    ∴。
    12、1
    【解析】
    PC切⊙O于点C,则∠PCB=∠A,∠P=∠P,
    ∴△PCB∽△PAC,
    ∴,
    ∵BP=PC=3,
    ∴PC2=PB•PA,即36=3•PA,
    ∵PA=12
    ∴AB=12-3=1.
    故答案是:1.
    13、
    【解析】
    根据完全平方式可求解,完全平方式为
    【详解】
    【点睛】
    此题主要考查二次根式的运算,完全平方式的正确运用是解题关键
    14、0.532, 在用频率估计概率时,试验次数越多越接近,所以取1﹣8组的频率值.
    【解析】
    根据用频率估计概率解答即可.
    【详解】
    ∵在用频率估计概率时,试验次数越多越接近,所以取1﹣8组的频率值,
    ∴这一型号的瓶盖盖面朝上的概率为0.532,
    故答案为:0.532,在用频率估计概率时,试验次数越多越接近,所以取1﹣8组的频率值.
    【点睛】
    本题考查了利用频率估计概率的知识,解答此题关键是用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.
    15、∠ACD=∠B或∠ADC=∠ACB或AD:AC=AC:AB
    【解析】
    试题分析:∵∠DAC=∠CAB
    ∴当∠ACD=∠B或∠ADC=∠ACB或AD:AC=AC:AB时,△ABC∽△ACD.故答案为∠ACD=∠B或∠ADC=∠ACB或AD:AC=AC:AB.
    考点:1.相似三角形的判定;2.开放型.
    16、
    【解析】
    分析:依据等式的基本性质依次移项、合并同类项、系数化为1即可得出答案.
    详解:移项,得:ax﹣x=1,合并同类项,得:(a﹣1)x=1.∵a≠1,∴a﹣1≠0,方程两边都除以a﹣1,得:x=.故答案为x=.
    点睛:本题主要考查解一元一次方程的能力,熟练掌握等式的基本性质及解一元一次方程的基本步骤是解题的关键.
    17、1
    【解析】
    解:连接OC,
    ∵AB为⊙O的直径,AB⊥CD,
    ∴CE=DE=CD=×6=3,
    设⊙O的半径为xcm,
    则OC=xcm,OE=OB﹣BE=x﹣1,
    在Rt△OCE中,OC2=OE2+CE2,
    ∴x2=32+(x﹣1)2,
    解得:x=1,
    ∴⊙O的半径为1,
    故答案为1.
    【点睛】
    本题利用了垂径定理和勾股定理求解,熟练掌握并应用定理是解题的关键.
    三、解答题(共7小题,满分69分)
    18、【问题】:详见解析;【探究】:四边形ABPE是平行四边形,理由详见解析;【应用】:8.
    【解析】
    (1)先根据平行线的性质和等量代换得出∠1=∠3,再利用中线性质得到BD=DC,证明△ABD≌△EDC,从而证明AB=DE(2)方法一:过点D作DN∥PE交直线CF于点N,由平行线性质得出四边形PDNE是平行四边形,从而得到四边形ABPE是平行四边形.方法二: 延长BP交直线CF于点N,根据平行线的性质结合等量代换证明△ABP≌△EPN,
    从而证明四边形ABPE是平行四边形(3)延长BP交CF于H,根据平行四边形的性质结合三角形的面积公式求解即可.
    【详解】
    证明:如图①

    是的中线,
    (或证明四边形ABDE是平行四边形,从而得到)
    【探究】
    四边形ABPE是平行四边形.
    方法一:如图②,
    证明:过点D作交直线于点,
    ∴四边形是平行四边形,
    ∵由问题结论可得
    ∴四边形是平行四边形.
    方法二:如图③,
    证明:延长BP交直线CF于点N,
    ∵是的中线,
    ∴四边形是平行四边形.
    【应用】
    如图④,延长BP交CF于H.
    由上面可知,四边形是平行四边形,
    ∴四边形APHE是平行四边形,

    【点睛】
    此题重点考查学生对平行线性质,平行四边形性质的综合应用能力,熟练掌握平行线的性质是解题的关键.
    19、-2.
    【解析】
    根据分式的运算法化解即可求出答案.
    【详解】
    解:原式=,
    当x=﹣1时,原式=.
    【点睛】
    熟练运用分式的运算法则.
    20、见解析
    【解析】
    (1)可以把要证明相等的线段AE,CF放到△AEO,△BFO中考虑全等的条件,由两个等腰直角三角形得AO=BO,OE=OF,再找夹角相等,这两个夹角都是直角减去∠BOE的结果,所以相等,由此可以证明△AEO≌△BFO;
    (2)由(1)知:∠OAC=∠OBF,∴∠BDA=∠AOB=90°,由此可以证明AE⊥BF
    【详解】
    解:(1)证明:在△AEO与△BFO中,
    ∵Rt△OAB与Rt△EOF等腰直角三角形,
    ∴AO=OB,OE=OF,∠AOE=90°-∠BOE=∠BOF,
    ∴△AEO≌△BFO,
    ∴AE=BF;
    ( 2)延长AE交BF于D,交OB于C,则∠BCD=∠ACO
    由(1)知:∠OAC=∠OBF,
    ∴∠BDA=∠AOB=90°,
    ∴AE⊥BF.
    21、(1)8m2;(2)68m2;(3) 40,8
    【解析】
    (1)根据中心对称图形性质和,,,可得,即可解当时,4个全等直角三角形的面积;
    (2)白色区域面积即是矩形面积减去一二部分的面积,分别用含x的代数式表示出菱形和四个全等直角三角形的面积,列出含有x的解析式表示白色区域面积,并化成顶点式,根据,,,求出自变量的取值范围,再根据二次函数的增减性即可解答;
    (3)计算出x=2时各部分面积以及用含m、n的代数式表示出费用,因为m,n均为正整数,解得m=40,n=8.
    【详解】
    (1) ∵为长方形和菱形的对称中心,,∴
    ∵,,∴
    ∴当时,,
    (2)∵,
    ∴-,
    ∵,,
    ∴解不等式组得,
    ∵,结合图像,当时,随的增大而减小.
    ∴当时, 取得最大值为
    (3)∵当时,SⅠ=4x2=16 m2,=12 m2,=68m2,总费用:16×2m+12×5n+68×2m=7200,化简得:5n+14m=600,因为m,n均为正整数,解得m=40,n=8.
    【点睛】
    本题考查中心对称图形性质,菱形、直角三角形的面积计算,二次函数的最值问题,解题关键是用含x的二次函数解析式表示出白色区面积.
    22、(1)详见解析;(1)①详见解析;②1;③.
    【解析】
    (1)只要证明△BAE≌△CDE即可;
    (1)①利用(1)可知△EBC是等腰直角三角形,根据ASA即可证明;
    ②构建二次函数,利用二次函数的性质即可解决问题;
    ③如图3中,作EH⊥BG于H.设NG=m,则BG=1m,BN=EN=m,EB=m.利用面积法求出EH,根据三角函数的定义即可解决问题.
    【详解】
    (1)证明:如图1中,
    ∵四边形ABCD是矩形,
    ∴AB=DC,∠A=∠D=90°,
    ∵E是AD中点,
    ∴AE=DE,
    ∴△BAE≌△CDE,
    ∴BE=CE.
    (1)①解:如图1中,
    由(1)可知,△EBC是等腰直角三角形,
    ∴∠EBC=∠ECB=45°,
    ∵∠ABC=∠BCD=90°,
    ∴∠EBM=∠ECN=45°,
    ∵∠MEN=∠BEC=90°,
    ∴∠BEM=∠CEN,
    ∵EB=EC,
    ∴△BEM≌△CEN;
    ②∵△BEM≌△CEN,
    ∴BM=CN,设BM=CN=x,则BN=4-x,
    ∴S△BMN=•x(4-x)=-(x-1)1+1,
    ∵-<0,
    ∴x=1时,△BMN的面积最大,最大值为1.
    ③解:如图3中,作EH⊥BG于H.设NG=m,则BG=1m,BN=EN=m,EB=m.
    ∴EG=m+m=(1+)m,
    ∵S△BEG=•EG•BN=•BG•EH,
    ∴EH==m,
    在Rt△EBH中,sin∠EBH=.
    【点睛】
    本题考查四边形综合题、矩形的性质、等腰直角三角形的判定和性质、全等三角形的判定和性质、旋转变换、锐角三角函数等知识,解题的关键是准确寻找全等三角形解决问题,学会添加常用辅助线,学会利用参数解决问题,
    23、(1);(2)-2或-1;(3)-1≤n

    相关试卷

    江苏省无锡市积余教育集团2023-2024学年数学九上期末考试试题含答案:

    这是一份江苏省无锡市积余教育集团2023-2024学年数学九上期末考试试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,下列函数的对称轴是直线的是等内容,欢迎下载使用。

    2023-2024学年江苏省无锡市积余教育集团数学八上期末考试模拟试题含答案:

    这是一份2023-2024学年江苏省无锡市积余教育集团数学八上期末考试模拟试题含答案,共6页。试卷主要包含了已知,立方根等于它本身的有,一次函数的图象与轴的交点坐标是,在,分式的个数有,下列命题中为假命题的是等内容,欢迎下载使用。

    江苏省无锡市积余教育集团2023—2024学年九年级上学期期中数学试卷:

    这是一份江苏省无锡市积余教育集团2023—2024学年九年级上学期期中数学试卷,文件包含初三数学期中试卷docx、九年级数学答案docx等2份试卷配套教学资源,其中试卷共10页, 欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map