搜索
    上传资料 赚现金
    英语朗读宝

    江苏省兴化市昭阳湖初级中学2022年中考猜题数学试卷含解析

    江苏省兴化市昭阳湖初级中学2022年中考猜题数学试卷含解析第1页
    江苏省兴化市昭阳湖初级中学2022年中考猜题数学试卷含解析第2页
    江苏省兴化市昭阳湖初级中学2022年中考猜题数学试卷含解析第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省兴化市昭阳湖初级中学2022年中考猜题数学试卷含解析

    展开

    这是一份江苏省兴化市昭阳湖初级中学2022年中考猜题数学试卷含解析,共25页。试卷主要包含了答题时请按要求用笔,不等式组的解在数轴上表示为,五个新篮球的质量等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如右图是用八块完全相同的小正方体搭成的几何体,从正面看几何体得到的图形是( )

    A. B.
    C. D.
    2.有下列四个命题:①相等的角是对顶角;②两条直线被第三条直线所截,同位角相等;③同一种正五边形一定能进行平面镶嵌;④垂直于同一条直线的两条直线互相垂直.其中假命题的个数有(  )
    A.1个 B.2个 C.3个 D.4个
    3.通州区大运河森林公园占地面积10700亩,是北京规模最大的滨河森林公园,将10700用科学记数法表示为( )

    A.10.7×104 B.1.07×105 C.1.7×104 D.1.07×104
    4.如图,已知AB∥DE,∠ABC=80°,∠CDE=140°,则∠C=(  )

    A.50° B.40° C.30° D.20°
    5.将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球,不放回;再随机摸出一球.两次摸出的球上的汉字能组成“孔孟”的概率是( )
    A. B. C. D.
    6.如图,O为直线 AB上一点,OE平分∠BOC,OD⊥OE 于点 O,若∠BOC=80°,则∠AOD的度数是( )

    A.70° B.50° C.40° D.35°
    7.不等式组的解在数轴上表示为( )
    A. B. C. D.
    8.一个布袋内只装有1个黑球和2个白球,这些球除颜色不同外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是( )
    A. B. C. D.
    9.五个新篮球的质量(单位:克)分别是+5、﹣3.5、+0.7、﹣2.5、﹣0.6,正数表示超过标准质量的克数,负数表示不足标准质量的克数.仅从轻重的角度看,最接近标准的篮球的质量是(  )
    A.﹣2.5 B.﹣0.6 C.+0.7 D.+5
    10.如图,⊙O与直线l1相离,圆心O到直线l1的距离OB=2,OA=4,将直线l1绕点A逆时针旋转30°后得到的直线l2刚好与⊙O相切于点C,则OC=( )

    A.1 B.2 C.3 D.4
    11.有五名射击运动员,教练为了分析他们成绩的波动程度,应选择下列统计量中的( )
    A.方差 B.中位数 C.众数 D.平均数
    12.益阳市高新区某厂今年新招聘一批员工,他们中不同文化程度的人数见下表:
    文化程度
    高中
    大专
    本科
    硕士
    博士
    人数
    9
    17
    20
    9
    5
    关于这组文化程度的人数数据,以下说法正确的是:( )
    A.众数是20 B.中位数是17 C.平均数是12 D.方差是26
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,△ABC中,AB=AC,D是AB上的一点,且AD=AB,DF∥BC,E为BD的中点.若EF⊥AC,BC=6,则四边形DBCF的面积为____.

    14.已知x=2是关于x的一元二次方程kx2+(k2﹣2)x+2k+4=0的一个根,则k的值为_____.
    15.如图,Rt△ABC中,若∠C=90°,BC=4,tanA=,则AB=___.

    16.已知点,在二次函数的图象上,若,则__________.(填“”“”“”)
    17.如图,在Rt△ABC中,D,E为斜边AB上的两个点,且BD=BC,AE=AC,则∠DCE的大小等于__________度.

    18.如图,已知Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,点M、N分别在线段AC、AB上,将△ANM沿直线MN折叠,使点A的对应点D恰好落在线段BC上,当△DCM为直角三角形时,折痕MN的长为__.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)甲、乙两人相约周末登花果山,甲、乙两人距地面的高度(米)与登山时间(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:
    (1)甲登山上升的速度是每分钟 米,乙在地时距地面的高度为 米;
    (2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度(米)与登山时间(分)之间的函数关系式.
    (3)登山多长时间时,甲、乙两人距地面的高度差为50米?

    20.(6分)计算:.
    21.(6分)已知抛物线y=ax2+bx+2过点A(5,0)和点B(﹣3,﹣4),与y轴交于点C.
    (1)求抛物线y=ax2+bx+2的函数表达式;
    (2)求直线BC的函数表达式;
    (3)点E是点B关于y轴的对称点,连接AE、BE,点P是折线EB﹣BC上的一个动点,
    ①当点P在线段BC上时,连接EP,若EP⊥BC,请直接写出线段BP与线段AE的关系;
    ②过点P作x轴的垂线与过点C作的y轴的垂线交于点M,当点M不与点C重合时,点M关于直线PC的对称点为点M′,如果点M′恰好在坐标轴上,请直接写出此时点P的坐标.

    22.(8分)已知抛物线的开口向上顶点为P
    (1)若P点坐标为(4,一1),求抛物线的解析式;
    (2)若此抛物线经过(4,一1),当-1≤x≤2时,求y的取值范围(用含a的代数式表示)
    (3)若a=1,且当0≤x≤1时,抛物线上的点到x轴距离的最大值为6,求b的值
    23.(8分)九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销售量的相关信息如下表:
    时间x(天)

    1≤x<50

    50≤x≤90

    售价(元/件)

    x+40

    90

    每天销量(件)

    200-2x

    已知该商品的进价为每件30元,设销售该商品的每天利润为y元[求出y与x的函数关系式;问销售该商品第几天时,当天销售利润最大,最大利润是多少?该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.
    24.(10分)如图,平面直角坐标系中,直线AB:交y轴于点A(0,1),交x轴于点B.直线x=1交AB于点D,交x轴于点E,P是直线x=1上一动点,且在点D的上方,设P(1,n).求直线AB的解析式和点B的坐标;求△ABP的面积(用含n的代数式表示);当S△ABP=2时,以PB为边在第一象限作等腰直角三角形BPC,求出点C的坐标.

    25.(10分)如图,直角坐标系中,⊙M经过原点O(0,0),点A(,0)与点B(0,﹣1),点D在劣弧OA上,连接BD交x轴于点C,且∠COD=∠CBO.
    (1)请直接写出⊙M的直径,并求证BD平分∠ABO;
    (2)在线段BD的延长线上寻找一点E,使得直线AE恰好与⊙M相切,求此时点E的坐标.

    26.(12分)(8分)如图,在平面直角坐标系中,O为原点,直线AB分别与x轴、y轴交于B和A,与反比例函数的图象交于C、D,CE⊥x轴于点E,tan∠ABO=,OB=4,OE=1.

    (1)求直线AB和反比例函数的解析式;
    (1)求△OCD的面积.
    27.(12分)已知关于x的一元二次方程3x2﹣6x+1﹣k=0有实数根,k为负整数.求k的值;如果这个方程有两个整数根,求出它的根.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    找到从正面看所得到的图形即可,注意所有从正面看到的棱都应表现在主视图中.
    【详解】
    解:从正面看该几何体,有3列正方形,分别有:2个,2个,2个,如图.

    故选B.
    【点睛】
    本题考查了三视图的知识,主视图是从物体的正面看到的视图,属于基础题型.
    2、D
    【解析】
    根据对顶角的定义,平行线的性质以及正五边形的内角及镶嵌的知识,逐一判断.
    【详解】
    解:①对顶角有位置及大小关系的要求,相等的角不一定是对顶角,故为假命题;
    ②只有当两条平行直线被第三条直线所截,同位角相等,故为假命题;
    ③正五边形的内角和为540°,则其内角为108°,而360°并不是108°的整数倍,不能进行平面镶嵌,故为假命题;
    ④在同一平面内,垂直于同一条直线的两条直线平行,故为假命题.
    故选:D.
    【点睛】
    本题考查了命题与证明.对顶角,垂线,同位角,镶嵌的相关概念.关键是熟悉这些概念,正确判断.
    3、D
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    解:10700=1.07×104,
    故选:D.
    【点睛】
    此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    4、B
    【解析】
    试题解析:延长ED交BC于F,

    ∵AB∥DE,


    在△CDF中,

    故选B.
    5、B
    【解析】
    根据简单概率的计算公式即可得解.
    【详解】
    一共四个小球,随机摸出一球,不放回;再随机摸出一球一共有12中可能,其中能组成孔孟的有2种,所以两次摸出的球上的汉字能组成“孔孟”的概率是.
    故选B.
    考点:简单概率计算.
    6、B
    【解析】
    分析:由OE是∠BOC的平分线得∠COE=40°,由OD⊥OE得∠DOC=50°,从而可求出∠AOD的度数.
    详解:∵OE是∠BOC的平分线,∠BOC=80°,
    ∴∠COE=∠BOC=×80°=40°,
    ∵OD⊥OE
    ∴∠DOE=90°,
    ∴∠DOC=∠DOE-∠COE=90°-40°=50°,
    ∴∠AOD=180°-∠BOC-∠DOC==180°-80°-50°=50°.
    故选B.
    点睛:本题考查了角平分线的定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.性质:若OC是∠AOB的平分线则∠AOC=∠BOC=∠AOB或∠AOB=2∠AOC=2∠BOC.
    7、C
    【解析】
    先解每一个不等式,再根据结果判断数轴表示的正确方法.
    【详解】
    解:由不等式①,得3x>5-2,解得x>1,
    由不等式②,得-2x≥1-5,解得x≤2,
    ∴数轴表示的正确方法为C.
    故选C.
    【点睛】
    考核知识点:解不等式组.
    8、D
    【解析】
    试题分析:列表如下




    白1

    白2



    (黑,黑)

    (白1,黑)

    (白2,黑)

    白1

    (黑,白1)

    (白1,白1)

    (白2,白1)

    白2

    (黑,白2)

    (白1,白2)

    (白2,白2)

    由表格可知,随机摸出一个球后放回搅匀,再随机摸出一个球所以的结果有9种,两次摸出的球都是黑球的结果有1种,所以两次摸出的球都是黑球的概率是.故答案选D.
    考点:用列表法求概率.
    9、B
    【解析】
    求它们的绝对值,比较大小,绝对值小的最接近标准的篮球的质量.
    【详解】
    解:|+5|=5,|-3.5|=3.5,|+0.7|=0.7,|-2.5|=2.5,|-0.6|=0.6,
    ∵5>3.5>2.5>0.7>0.6,
    ∴最接近标准的篮球的质量是-0.6,
    故选B.
    【点睛】
    本题考查了正数和负数,掌握正数和负数的定义以及意义是解题的关键.
    10、B
    【解析】
    先利用三角函数计算出∠OAB=60°,再根据旋转的性质得∠CAB=30°,根据切线的性质得OC⊥AC,从而得到∠OAC=30°,然后根据含30度的直角三角形三边的关系可得到OC的长.
    【详解】
    解:在Rt△ABO中,sin∠OAB===,
    ∴∠OAB=60°,
    ∵直线l1绕点A逆时针旋转30°后得到的直线l1刚好与⊙O相切于点C,
    ∴∠CAB=30°,OC⊥AC,
    ∴∠OAC=60°﹣30°=30°,
    在Rt△OAC中,OC=OA=1.
    故选B.
    【点睛】
    本题考查了直线与圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d,则直线l和⊙O相交⇔d<r;直线l和⊙O相切⇔d=r;直线l和⊙O相离⇔d>r.也考查了旋转的性质.
    11、A
    【解析】
    试题分析:方差是用来衡量一组数据波动大小的量,体现数据的稳定性,集中程度;方差越大,即波动越大,数据越不稳定;反之,方差越小,数据越稳定.故教练要分析射击运动员成绩的波动程度,只需要知道训练成绩的方差即可.
    故选A.
    考点:1、计算器-平均数,2、中位数,3、众数,4、方差
    12、C
    【解析】
    根据众数、中位数、平均数以及方差的概念求解.
    【详解】
    A、这组数据中9出现的次数最多,众数为9,故本选项错误;
    B、因为共有5组,所以第3组的人数为中位数,即9是中位数,故本选项错误;
    C、平均数==12,故本选项正确;
    D、方差= [(9-12)2+(17-12)2+(20-12)2+(9-12)2+(5-12)2]= ,故本选项错误.
    故选C.
    【点睛】
    本题考查了中位数、平均数、众数的知识,解答本题的关键是掌握各知识点的概念.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、2
    【解析】
    解:如图,过D点作DG⊥AC,垂足为G,过A点作AH⊥BC,垂足为H,

    ∵AB=AC,点E为BD的中点,且AD=AB,
    ∴设BE=DE=x,则AD=AF=1x.
    ∵DG⊥AC,EF⊥AC,
    ∴DG∥EF,∴,即,解得.
    ∵DF∥BC,∴△ADF∽△ABC,∴,即,解得DF=1.
    又∵DF∥BC,∴∠DFG=∠C,
    ∴Rt△DFG∽Rt△ACH,∴,即,解得.
    在Rt△ABH中,由勾股定理,得.
    ∴.
    又∵△ADF∽△ABC,∴,

    ∴.
    故答案为:2.
    14、﹣1
    【解析】【分析】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,再解关于k的方程,然后根据一元二次方程的定义确定k的值即可.
    【详解】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,
    整理得k2+1k=0,解得k1=0,k2=﹣1,
    因为k≠0,
    所以k的值为﹣1.
    故答案为:﹣1.
    【点睛】本题考查了一元二次方程的定义以及一元二次方程的解,能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.
    15、1.
    【解析】
    在Rt△ABC中,已知tanA,BC的值,根据tanA=,可将AC的值求出,再由勾股定理可将斜边AB的长求出.
    【详解】
    解:Rt△ABC中,∵BC=4,tanA=


    故答案为1.
    【点睛】
    考查解直角三角形以及勾股定理,熟练掌握锐角三角函数是解题的关键.
    16、
    【解析】
    抛物线的对称轴为:x=1,
    ∴当x>1时,y随x的增大而增大.
    ∴若x1>x2>1 时,y1>y2 .
    故答案为>
    17、45
    【解析】
    试题解析:设∠DCE=x,∠ACD=y,则∠ACE=x+y,∠BCE=90°-∠ACE=90°-x-y.
    ∵AE=AC,
    ∴∠ACE=∠AEC=x+y,
    ∵BD=BC,
    ∴∠BDC=∠BCD=∠BCE+∠DCE=90°-x-y+x=90°-y.
    在△DCE中,∵∠DCE+∠CDE+∠DEC=180°,
    ∴x+(90°-y)+(x+y)=180°,
    解得x=45°,
    ∴∠DCE=45°.
    考点:1.等腰三角形的性质;2.三角形内角和定理.
    18、或
    【解析】
    分析:依据△DCM为直角三角形,需要分两种情况进行讨论:当∠CDM=90°时,△CDM是直角三角形;当∠CMD=90°时,△CDM是直角三角形,分别依据含30°角的直角三角形的性质以及等腰直角三角形的性质,即可得到折痕MN的长.
    详解:分两种情况:
    ①如图,当∠CDM=90°时,△CDM是直角三角形,

    ∵在Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,
    ∴∠C=30°,AB=AC=+2,
    由折叠可得,∠MDN=∠A=60°,
    ∴∠BDN=30°,
    ∴BN=DN=AN,
    ∴BN=AB=,
    ∴AN=2BN=,
    ∵∠DNB=60°,
    ∴∠ANM=∠DNM=60°,
    ∴∠AMN=60°,
    ∴AN=MN=;
    ②如图,当∠CMD=90°时,△CDM是直角三角形,

    由题可得,∠CDM=60°,∠A=∠MDN=60°,
    ∴∠BDN=60°,∠BND=30°,
    ∴BD=DN=AN,BN=BD,
    又∵AB=+2,
    ∴AN=2,BN=,
    过N作NH⊥AM于H,则∠ANH=30°,
    ∴AH=AN=1,HN=,
    由折叠可得,∠AMN=∠DMN=45°,
    ∴△MNH是等腰直角三角形,
    ∴HM=HN=,
    ∴MN=,
    故答案为:或.
    点睛:本题考查了翻折变换-折叠问题,等腰直角三角形的性质,正确的作出图形是解题的关键.折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)10;1;(2);(3)4分钟、9分钟或3分钟.
    【解析】
    (1)根据速度=高度÷时间即可算出甲登山上升的速度;根据高度=速度×时间即可算出乙在A地时距地面的高度b的值;
    (2)分0≤x≤2和x≥2两种情况,根据高度=初始高度+速度×时间即可得出y关于x的函数关系;
    (3)当乙未到终点时,找出甲登山全程中y关于x的函数关系式,令二者做差等于50即可得出关于x的一元一次方程,解之即可求出x值;当乙到达终点时,用终点的高度-甲登山全程中y关于x的函数关系式=50,即可得出关于x的一元一次方程,解之可求出x值.综上即可得出结论.
    【详解】
    (1)(10-100)÷20=10(米/分钟),
    b=3÷1×2=1.
    故答案为:10;1.
    (2)当0≤x≤2时,y=3x;
    当x≥2时,y=1+10×3(x-2)=1x-1.
    当y=1x-1=10时,x=2.
    ∴乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为.
    (3)甲登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=10x+100(0≤x≤20).
    当10x+100-(1x-1)=50时,解得:x=4;
    当1x-1-(10x+100)=50时,解得:x=9;
    当10-(10x+100)=50时,解得:x=3.
    答:登山4分钟、9分钟或3分钟时,甲、乙两人距地面的高度差为50米.
    【点睛】
    本题考查了一次函数的应用以及解一元一次方程,解题的关键是:(1)根据数量关系列式计算;(2)根据高度=初始高度+速度×时间找出y关于x的函数关系式;(3)将两函数关系式做差找出关于x的一元一次方程.
    20、
    【解析】
    直接利用负整数指数幂的性质以及绝对值的性质、零指数幂的性质以及特殊角的三角函数值化简进而得出答案.
    【详解】
    原式=9﹣2+1﹣2=.
    【点睛】
    本题考查了实数运算,正确化简各数是解题的关键.
    21、(1)y=﹣x2+x+2;(2)y=2x+2;(3)①线段BP与线段AE的关系是相互垂直;②点P的坐标为:(﹣4+2,﹣8+4)或(﹣4﹣2,﹣8﹣4)或(0,﹣4)或(﹣,﹣4).
    【解析】
    (1)将A(5,0)和点B(﹣3,﹣4)代入y=ax2+bx+2,即可求解;
    (2)C点坐标为(0,2),把点B、C的坐标代入直线方程y=kx+b即可求解;
    (3)①AE直线的斜率kAE=2,而直线BC斜率的kAE=2即可求解;
    ②考虑当P点在线段BC上时和在线段BE上时两种情况,利用PM′=PM即可求解.
    【详解】
    (1)将A(5,0)和点B(﹣3,﹣4)代入y=ax2+bx+2,
    解得:a=﹣,b=,
    故函数的表达式为y=﹣x2+x+2;
    (2)C点坐标为(0,2),把点B、C的坐标代入直线方程y=kx+b,
    解得:k=2,b=2,
    故:直线BC的函数表达式为y=2x+2,
    (3)①E是点B关于y轴的对称点,E坐标为(3,﹣4),
    则AE直线的斜率kAE=2,而直线BC斜率的kAE=2,
    ∴AE∥BC,而EP⊥BC,∴BP⊥AE
    而BP=AE,∴线段BP与线段AE的关系是相互垂直;
    ②设点P的横坐标为m,
    当P点在线段BC上时,
    P坐标为(m,2m+2),M坐标为(m,2),则PM=2m,
    直线MM′⊥BC,∴kMM′=﹣,
    直线MM′的方程为:y=﹣x+(2+m),
    则M′坐标为(0,2+m)或(4+m,0),
    由题意得:PM′=PM=2m,
    PM′2=42+m2=(2m)2,此式不成立,
    或PM′2=m2+(2m+2)2=(2m)2,
    解得:m=﹣4±2,
    故点P的坐标为(﹣4±2,﹣8±4);
    当P点在线段BE上时,
    点P坐标为(m,﹣4),点M坐标为(m,2),
    则PM=6,
    直线MM′的方程不变,为y=﹣x+(2+m),
    则M′坐标为(0,2+m)或(4+m,0),
    PM′2=m2+(6+m)2=(2m)2,
    解得:m=0,或﹣;
    或PM′2=42+42=(6)2,无解;
    故点P的坐标为(0,﹣4)或(﹣,﹣4);
    综上所述:
    点P的坐标为:(﹣4+2,﹣8+4)或(﹣4﹣2,﹣8﹣4)或(0,﹣4)或(﹣,﹣4).
    【点睛】
    主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.
    22、(1);(2)1-4a≤y≤4+5a;(3)b=2或-10.
    【解析】
    (1)将P(4,-1)代入,可求出解析式
    (2)将(4,-1)代入求得:b=-4a-1,再代入对称轴直线 中,可判断,且开口向上,所以y随x的增大而减小,再把x=-1,x=2代入即可求得.
    (3)观察图象可得,当0≤x≤1时,抛物线上的点到x轴距离的最大值为6,这些点可能为x=0,x=1,三种情况,再根据对称轴在不同位置进行讨论即可.
    【详解】
    解:(1)由此抛物线顶点为P(4,-1),
    所以y=a(x-4)2-1=ax2-8ax+16a-1,即16a-1=3,解得a=, b=-8a=-2
    所以抛物线解析式为:;
    (2)由此抛物线经过点C(4,-1),
    所以 一1=16a+4b+3,即b=-4a-1.
    因为抛物线的开口向上,则有
    其对称轴为直线,而
    所以当-1≤x≤2时,y随着x的增大而减小
    当x=-1时,y=a+(4a+1)+3=4+5a
    当x=2时,y=4a-2(4a+1)+3=1-4a
    所以当-1≤x≤2时,1-4a≤y≤4+5a;
    (3)当a=1时,抛物线的解析式为y=x2+bx+3
    ∴抛物线的对称轴为直线
    由抛物线图象可知,仅当x=0,x=1或x=-时,抛物线上的点可能离x轴最远
    分别代入可得,当x=0时,y=3
    当x=1时,y=b+4
    当x=-时,y=-+3
    ①当一<0,即b>0时,3≤y≤b+4,
    由b+4=6解得b=2
    ②当0≤-≤1时,即一2≤b≤0时,△=b2-12<0,抛物线与x轴无公共点
    由b+4=6解得b=2(舍去);
    ③当 ,即b<-2时,b+4≤y≤3,
    由b+4=-6解得b=-10
    综上,b=2或-10
    【点睛】
    本题考查了二次函数的性质,待定系数法求函数解析式,以及最值问题,关键是对称轴在不同的范围内,抛物线上的点到x轴距离的最大值的点不同.
    23、(1);(2)第45天时,当天销售利润最大,最大利润是6050元;(3)41.
    【解析】
    (1)根据单价乘以数量,可得利润,可得答案.
    (2)根据分段函数的性质,可分别得出最大值,根据有理数的比较,可得答案.
    (3)根据二次函数值大于或等于4800,一次函数值大于或等于48000,可得不等式,根据解不等式组,可得答案.
    【详解】
    (1)当1≤x<50时,,
    当50≤x≤90时,,
    综上所述:.
    (2)当1≤x<50时,二次函数开口下,二次函数对称轴为x=45,
    当x=45时,y最大=-2×452+180×45+2000=6050,
    当50≤x≤90时,y随x的增大而减小,
    当x=50时,y最大=6000,
    综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元.
    (3)解,结合函数自变量取值范围解得,
    解,结合函数自变量取值范围解得
    所以当20≤x≤60时,即共41天,每天销售利润不低于4800元.
    【点睛】
    本题主要考查了1.二次函数和一次函数的应用(销售问题);2.由实际问题列函数关系式;3. 二次函数和一次函数的性质;4.分类思想的应用.
    24、 (1) AB的解析式是y=-x+1.点B(3,0).(2)n-1;(3) (3,4)或(5,2)或(3,2).
    【解析】
    试题分析:(1)把A的坐标代入直线AB的解析式,即可求得b的值,然后在解析式中,令y=0,求得x的值,即可求得B的坐标;
    (2)过点A作AM⊥PD,垂足为M,求得AM的长,即可求得△BPD和△PAB的面积,二者的和即可求得;
    (3)当S△ABP=2时,n-1=2,解得n=2,则∠OBP=45°,然后分A、B、P分别是直角顶点求解.
    试题解析:(1)∵y=-x+b经过A(0,1),
    ∴b=1,
    ∴直线AB的解析式是y=-x+1.
    当y=0时,0=-x+1,解得x=3,
    ∴点B(3,0).
    (2)过点A作AM⊥PD,垂足为M,则有AM=1,

    ∵x=1时,y=-x+1=,P在点D的上方,
    ∴PD=n-,S△APD=PD•AM=×1×(n-)=n-
    由点B(3,0),可知点B到直线x=1的距离为2,即△BDP的边PD上的高长为2,
    ∴S△BPD=PD×2=n-,
    ∴S△PAB=S△APD+S△BPD=n-+n-=n-1;
    (3)当S△ABP=2时,n-1=2,解得n=2,
    ∴点P(1,2).
    ∵E(1,0),
    ∴PE=BE=2,
    ∴∠EPB=∠EBP=45°.
    第1种情况,如图1,∠CPB=90°,BP=PC,过点C作CN⊥直线x=1于点N.

    ∵∠CPB=90°,∠EPB=45°,
    ∴∠NPC=∠EPB=45°.
    又∵∠CNP=∠PEB=90°,BP=PC,
    ∴△CNP≌△BEP,
    ∴PN=NC=EB=PE=2,
    ∴NE=NP+PE=2+2=4,
    ∴C(3,4).
    第2种情况,如图2∠PBC=90°,BP=BC,

    过点C作CF⊥x轴于点F.
    ∵∠PBC=90°,∠EBP=45°,
    ∴∠CBF=∠PBE=45°.
    又∵∠CFB=∠PEB=90°,BC=BP,
    ∴△CBF≌△PBE.
    ∴BF=CF=PE=EB=2,
    ∴OF=OB+BF=3+2=5,
    ∴C(5,2).
    第3种情况,如图3,∠PCB=90°,CP=EB,

    ∴∠CPB=∠EBP=45°,
    在△PCB和△PEB中,

    ∴△PCB≌△PEB(SAS),
    ∴PC=CB=PE=EB=2,
    ∴C(3,2).
    ∴以PB为边在第一象限作等腰直角三角形BPC,点C的坐标是(3,4)或(5,2)或(3,2).
    考点:一次函数综合题.
    25、(1)详见解析;(2)(,1).
    【解析】
    (1)根据勾股定理可得AB的长,即⊙M的直径,根据同弧所对的圆周角可得BD平分∠ABO;
    (2)作辅助构建切线AE,根据特殊的三角函数值可得∠OAB=30°,分别计算EF和AF的长,可得点E的坐标.
    【详解】
    (1)∵点A(,0)与点B(0,﹣1),
    ∴OA=,OB=1,
    ∴AB==2,
    ∵AB是⊙M的直径,
    ∴⊙M的直径为2,
    ∵∠COD=∠CBO,∠COD=∠CBA,
    ∴∠CBO=∠CBA,
    即BD平分∠ABO;
    (2)如图,过点A作AE⊥AB于E,交BD的延长线于点E,过E作EF⊥OA于F,即AE是切线,
    ∵在Rt△ACB中,tan∠OAB=,
    ∴∠OAB=30°,
    ∵∠ABO=90°,
    ∴∠OBA=60°,
    ∴∠ABC=∠OBC==30°,
    ∴OC=OB•tan30°=1×,
    ∴AC=OA﹣OC=,
    ∴∠ACE=∠ABC+∠OAB=60°,
    ∴∠EAC=60°,
    ∴△ACE是等边三角形,
    ∴AE=AC=,
    ∴AF=AE=,EF==1,
    ∴OF=OA﹣AF=,
    ∴点E的坐标为(,1).

    【点睛】
    此题属于圆的综合题,考查了勾股定理、圆周角定理、等边三角形的判定与性质以及三角函数等知识.注意准确作出辅助线是解此题的关键.
    26、(1),;(1)2.
    【解析】
    试题分析:(1)先求出A、B、C点坐标,用待定系数法求出直线AB和反比例的函数解析式;
    (1)联立一次函数的解析式和反比例的函数解析式可得交点D的坐标,从而根据三角形面积公式求解.
    试题解析:(1)∵OB=4,OE=1,∴BE=1+4=3.∵CE⊥x轴于点E,tan∠ABO==,∴OA=1,CE=3,∴点A的坐标为(0,1)、点B的坐标为C(4,0)、点C的坐标为(﹣1,3),设直线AB的解析式为,则,解得:,故直线AB的解析式为,设反比例函数的解析式为(),将点C的坐标代入,得3=,∴m=﹣3.∴该反比例函数的解析式为;
    (1)联立反比例函数的解析式和直线AB的解析式可得,可得交点D的坐标为(3,﹣1),则△BOD的面积=4×1÷1=1,△BOD的面积=4×3÷1=3,故△OCD的面积为1+3=2.
    考点:反比例函数与一次函数的交点问题.
    27、(2)k=﹣2,﹣2.(2)方程的根为x2=x2=2.
    【解析】
    (2)根据方程有实数根,得到根的判别式的值大于等于0列出关于k的不等式,求出不等式的解集即可得到k的值;
    (2)将k的值代入原方程,求出方程的根,经检验即可得到满足题意的k的值.
    【详解】
    解:(2)根据题意,得△=(﹣6)2﹣4×3(2﹣k)≥0,
    解得 k≥﹣2.
    ∵k为负整数,
    ∴k=﹣2,﹣2.
    (2)当k=﹣2时,不符合题意,舍去;
    当k=﹣2时,符合题意,此时方程的根为x2=x2=2.
    【点睛】
    本题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:(2)△>0时,方程有两个不相等的实数根;(2)△=0时,方程有两个相等的实数根;(3)△<0时,方程没有实数根.也考查了一元二次方程的解法.

    相关试卷

    江苏省兴化市昭阳湖初级中学2023-2024学年九年级下学期月考数学试题(原卷版+解析版):

    这是一份江苏省兴化市昭阳湖初级中学2023-2024学年九年级下学期月考数学试题(原卷版+解析版),文件包含精品解析江苏省兴化市昭阳湖初级中学2023-2024学年九年级下学期月考数学试题原卷版docx、精品解析江苏省兴化市昭阳湖初级中学2023-2024学年九年级下学期月考数学试题解析版docx等2份试卷配套教学资源,其中试卷共30页, 欢迎下载使用。

    江苏省兴化市昭阳湖初级中学2023-2024学年八年级上学期第二次质量抽测数学试卷(含答案):

    这是一份江苏省兴化市昭阳湖初级中学2023-2024学年八年级上学期第二次质量抽测数学试卷(含答案),共5页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    江苏省兴化市昭阳湖初级中学2023-2024学年七年级上学期第二次质量抽测数学试卷(月考):

    这是一份江苏省兴化市昭阳湖初级中学2023-2024学年七年级上学期第二次质量抽测数学试卷(月考),文件包含昭阳湖初级中学2023-2024学年第一学期第二次质量抽测七年级数学试题docx、七年级数学参考答案docx等2份试卷配套教学资源,其中试卷共6页, 欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map