年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    江苏省扬州市大丰区第一共同体市级名校2022年中考数学仿真试卷含解析

    江苏省扬州市大丰区第一共同体市级名校2022年中考数学仿真试卷含解析第1页
    江苏省扬州市大丰区第一共同体市级名校2022年中考数学仿真试卷含解析第2页
    江苏省扬州市大丰区第一共同体市级名校2022年中考数学仿真试卷含解析第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省扬州市大丰区第一共同体市级名校2022年中考数学仿真试卷含解析

    展开

    这是一份江苏省扬州市大丰区第一共同体市级名校2022年中考数学仿真试卷含解析,共19页。试卷主要包含了下列方程中,没有实数根的是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.

    一、选择题(共10小题,每小题3分,共30分)
    1.下列计算正确的是(  )
    A.a+a=2a B.b3•b3=2b3 C.a3÷a=a3 D.(a5)2=a7
    2.为了纪念物理学家费米,物理学界以费米(飞米)作为长度单位.已知1飞米等于0.000000000000001米,把0.000000000000001这个数用科学记数法表示为(  )
    A.1×10﹣15 B.0.1×10﹣14 C.0.01×10﹣13 D.0.01×10﹣12
    3.如图,A,B是半径为1的⊙O上两点,且OA⊥OB.点P从A出发,在⊙O上以每秒一个单位长度的速度匀速运动,回到点A运动结束. 设运动时间为x,弦BP的长度为y,那么下面图象中可能表示y与x的函数关系的是


    A.① B.④ C.②或④ D.①或③
    4.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是( )

    A.CB=CD B.∠BCA=∠DCA
    C.∠BAC=∠DAC D.∠B=∠D=90°
    5.若m,n是一元二次方程x2﹣2x﹣1=0的两个不同实数根,则代数式m2﹣m+n的值是(  )
    A.﹣1 B.3 C.﹣3 D.1
    6.下列方程中,没有实数根的是( )
    A. B.
    C. D.
    7.如图,水平的讲台上放置的圆柱体笔筒和正方体粉笔盒,其左视图是(  )

    A. B.
    C. D.
    8.估计的运算结果应在哪个两个连续自然数之间(  )
    A.﹣2和﹣1 B.﹣3和﹣2 C.﹣4和﹣3 D.﹣5和﹣4
    9.如图,正六边形ABCDEF内接于⊙O,半径为4,则这个正六边形的边心距OM和 的长分别为(  )

    A.2, B.2 ,π C., D.2,
    10.如图,一圆弧过方格的格点A、B、C,在方格中建立平面直角坐标系,使点A的坐标为(﹣3,2),则该圆弧所在圆心坐标是(  )

    A.(0,0) B.(﹣2,1) C.(﹣2,﹣1) D.(0,﹣1)
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,△ABC中,DE垂直平分AC交AB于E,∠A=30°,∠ACB=80°,则∠BCE=_____ °.

    12.一组数据10,10,9,8,x的平均数是9,则这列数据的极差是_____.
    13.甲、乙两人5次射击命中的环数分别为,甲:7,9,8,6,10;乙:7,8,9,8,8; =8,则这两人5次射击命中的环数的方差S甲2_____S乙2(填“>”“<”或“=”).
    14.如图,已知一块圆心角为270°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),圆锥底面圆的直径是60cm,则这块扇形铁皮的半径是_____cm.

    15.已知线段c是线段a和b的比例中项,且a、b的长度分别为2cm和8cm,则c的长度为_____cm.
    16.如图,等腰△ABC中,AB=AC=5,BC=8,点F是边BC上不与点B,C重合的一个动点,直线DE垂直平分BF,垂足为D.当△ACF是直角三角形时,BD的长为_____.

    三、解答题(共8题,共72分)
    17.(8分)已知关于 的方程mx2+(2m-1)x+m-1=0(m≠0) . 求证:方程总有两个不相等的实数根; 若方程的两个实数根都是整数,求整数 的值.
    18.(8分)先化简,再求值:,其中,.
    19.(8分)综合与实践:
    概念理解:将△ABC 绕点 A 按逆时针方向旋转,旋转角记为 θ(0°≤θ≤90°),并使各边长变为原来的 n 倍,得到△AB′C′,如图,我们将这种变换记为[θ,n],: .

    问题解决:(2)如图,在△ABC 中,∠BAC=30°,∠ACB=90°,对△ABC 作变换[θ,n]得到△AB′C′,使点 B,C,C′在同一直线上,且四边形 ABB′C′为矩形,求 θ 和 n 的值.

    拓广探索:(3)在△ABC 中,∠BAC=45°,∠ACB=90°,对△ABC作变换 得到△AB′C′,则四边形 ABB′C′为正方形
    20.(8分)进入冬季,某商家根据市民健康需要,代理销售一种防尘口罩,进货价为20元/包,经市场销售发现:销售单价为30元/包时,每周可售出200包,每涨价1元,就少售出5包.若供货厂家规定市场价不得低于30元/包.试确定周销售量y(包)与售价x(元/包)之间的函数关系式;试确定商场每周销售这种防尘口罩所获得的利润w(元)与售价x(元/包)之间的函数关系式,并直接写出售价x的范围;当售价x(元/包)定为多少元时,商场每周销售这种防尘口罩所获得的利润w(元)最大?最大利润是多少?
    21.(8分)如图1,在正方形ABCD中,E是边BC的中点,F是CD上一点,已知∠AEF=90°.
    (1)求证:;
    (2)平行四边形ABCD中,E是边BC上一点,F是边CD上一点,∠AFE=∠ADC,∠AEF=90°.
    ①如图2,若∠AFE=45°,求的值;
    ②如图3,若AB=BC,EC=3CF,直接写出cos∠AFE的值.

    22.(10分)如图,一枚运载火箭从距雷达站C处5km的地面O处发射,当火箭到达点A,B时,在雷达站C处测得点A,B的仰角分别为34°,45°,其中点O,A,B在同一条直线上.求AC和AB的长(结果保留小数点后一位)(参考数据:sin34°≈0.56;cos34°≈0.83;tan34°≈0.67)

    23.(12分)计算:+-2〡+6tan30°
    24.如图,四边形ABCD的外接圆为⊙O,AD是⊙O的直径,过点B作⊙O的切线,交DA的延长线于点E,连接BD,且∠E=∠DBC.

    (1)求证:DB平分∠ADC;
    (2)若EB=10,CD=9,tan∠ABE=,求⊙O的半径.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、A
    【解析】
    根据合并同类项法则;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变指数相乘对各选项分析判断后利用排除法求解.
    【详解】
    A.a+a=2a,故本选项正确;
    B.,故本选项错误;
    C. ,故本选项错误;
    D.,故本选项错误.
    故选:A.
    【点睛】
    考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方与积的乘方,比较基础,掌握运算法则是解题的关键.
    2、A
    【解析】
    根据科学记数法的表示方法解答.
    【详解】
    解:把这个数用科学记数法表示为.
    故选:.
    【点睛】
    此题重点考查学生对科学记数法的应用,熟练掌握小于0的数用科学记数法表示法是解题的关键.
    3、D
    【解析】
    分两种情形讨论当点P顺时针旋转时,图象是③,当点P逆时针旋转时,图象是①,由此即可解决问题.
    【详解】
    解:当点P顺时针旋转时,图象是③,当点P逆时针旋转时,图象是①.
    故选D.
    4、B
    【解析】
    由图形可知AC=AC,结合全等三角形的判定方法逐项判断即可.
    【详解】
    解:在△ABC和△ADC中
    ∵AB=AD,AC=AC,
    ∴当CB=CD时,满足SSS,可证明△ABC≌△ACD,故A可以;
    当∠BCA=∠DCA时,满足SSA,不能证明△ABC≌△ACD,故B不可以;
    当∠BAC=∠DAC时,满足SAS,可证明△ABC≌△ACD,故C可以;
    当∠B=∠D=90°时,满足HL,可证明△ABC≌△ACD,故D可以;
    故选:B.
    【点睛】
    本题考查了全等三角形的判定方法,熟练掌握判定定理是解题关键.
    5、B
    【解析】
    把m代入一元二次方程,可得,再利用两根之和,将式子变形后,整理代入,即可求值.
    【详解】
    解:∵若,是一元二次方程的两个不同实数根,
    ∴,


    故选B.
    【点睛】
    本题考查了一元二次方程根与系数的关系,及一元二次方程的解,熟记根与系数关系的公式.
    6、B
    【解析】
    分别计算四个方程的判别式的值,然后根据判别式的意义确定正确选项.
    【详解】
    解:A、△=(-2)2-4×(-3)=16>0,方程有两个不相等的两个实数根,所以A选项错误;
    B、△=(-2)2-4×3=-8<0,方程没有实数根,所以B选项正确;
    C、△=(-2)2-4×1=0,方程有两个相等的两个实数根,所以C选项错误;
    D、△=(-2)2-4×(-1)=8>0,方程有两个不相等的两个实数根,所以D选项错误.
    故选:B.
    【点睛】
    本题考查根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0根时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.
    7、C
    【解析】
    根据左视图是从物体的左面看得到的视图解答即可.
    【详解】
    解:水平的讲台上放置的圆柱形笔筒和正方体形粉笔盒,其左视图是一个含虚线的
    长方形,
    故选C.
    【点睛】
    本题考查的是几何体的三视图,左视图是从物体的左面看得到的视图.
    8、C
    【解析】
    根据二次根式的性质,可化简得=﹣3=﹣2,然后根据二次根式的估算,由3<2<4可知﹣2在﹣4和﹣3之间.
    故选C.
    点睛:此题主要考查了二次根式的化简和估算,关键是根据二次根式的性质化简计算,再二次根式的估算方法求解.
    9、D
    【解析】
    试题分析:连接OB,

    ∵OB=4,
    ∴BM=2,
    ∴OM=2,,
    故选D.
    考点:1正多边形和圆;2.弧长的计算.
    10、C
    【解析】
    如图:分别作AC与AB的垂直平分线,相交于点O,

    则点O即是该圆弧所在圆的圆心.
    ∵点A的坐标为(﹣3,2),
    ∴点O的坐标为(﹣2,﹣1).
    故选C.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、1
    【解析】
    根据△ABC中DE垂直平分AC,可求出AE=CE,再根据等腰三角形的性质求出∠ACE=∠A=30°,再根据∠ACB=80°即可解答.
    【详解】
    ∵DE垂直平分AC,∠A=30°,
    ∴AE=CE,∠ACE=∠A=30°,
    ∵∠ACB=80°,
    ∴∠BCE=80°-30°=1°.
    故答案为:1.
    12、1
    【解析】
    先根据平均数求出x,再根据极差定义可得答案.
    【详解】
    由题意知=9,
    解得:x=8,
    ∴这列数据的极差是10-8=1,
    故答案为1.
    【点睛】
    本题主要考查平均数和极差,熟练掌握平均数的计算得出x的值是解题的关键.
    13、>
    【解析】
    分别根据方差公式计算出甲、乙两人的方差,再比较大小.
    【详解】
    ∵=8,∴=[(7﹣8)2+(9﹣8)2+(8﹣8)2+(6﹣8)2+(10﹣8)2]=(1+1+0+4+4)=2,=[(7﹣8)2+(8﹣8)2+(9﹣8)2+(8﹣8)2+(8﹣8)2]=(1+0+1+0+0)=0.4,∴>.
    故答案为:>.
    【点睛】
    本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    14、40cm
    【解析】
    首先根据圆锥的底面直径求得圆锥的底面周长,然后根据底面周长等于展开扇形的弧长求得铁皮的半径即可.
    【详解】
    ∵圆锥的底面直径为60cm,
    ∴圆锥的底面周长为60πcm,
    ∴扇形的弧长为60πcm,
    设扇形的半径为r,
    则=60π,
    解得:r=40cm,
    故答案为:40cm.
    【点睛】
    本题考查了圆锥的计算,解题的关键是首先求得圆锥的底面周长,利用圆锥的底面周长等于扇形的弧长求解.
    15、1
    【解析】
    根据比例中项的定义,列出比例式即可得出中项,注意线段长度不能为负.
    【详解】
    根据比例中项的概念结合比例的基本性质,得:比例中项的平方等于两条线段的乘积.
    所以c2=2×8,
    解得c=±1(线段是正数,负值舍去),
    故答案为1.
    【点睛】
    此题考查了比例线段.理解比例中项的概念,这里注意线段长度不能是负数.
    16、2或
    【解析】
    分两种情况讨论:(1)当时,,利用等腰三角形的三线合一性质和垂直平分线的性质可解;
    (2)当时,过点A作于点M,证明列比例式求出,从而得,再利用垂直平分线的性质得.
    【详解】
    解:(1)当时,

    ∵垂直平分,
    .

    (2)当时,过点A作于点,


    在与中,




    .

    故答案为或.
    【点睛】
    本题主要考查了等腰三角形的三线合一性质和线段垂直平分线的性质定理得应用.本题难度中等.

    三、解答题(共8题,共72分)
    17、(1)证明见解析(2)m=1或m=-1
    【解析】
    试题分析:(1)由于m≠0,则计算判别式的值得到,从而可判断方程总有两个不相等的实数根;
    (2)先利用求根公式得到然后利用有理数的整除性确定整数的值.
    试题解析:(1)证明:∵m≠0,
    ∴方程为一元二次方程,

    ∴此方程总有两个不相等的实数根;
    (2)∵

    ∵方程的两个实数根都是整数,且m是整数,
    ∴m=1或m=−1.
    18、1
    【解析】
    分析:先把小括号内的通分,按照分式的减法和分式的除法法则进行化简,再把字母的值代入运算即可.
    详解:原式



    当x=-1、y=2时,
    原式=-(-1)2+2×22
    =-1+8
    =1.
    点睛:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.
    19、(1);(2);(3).
    【解析】
    (1)根据定义可知△ABC∽△AB′C′,再根据相似三角形的面积之比等于相似比的平方即可;
    (2)根据四边形是矩形,得出,进而得出,根据30°直角三角形的性质即可得出答案;
    (3)根据四边形 ABB′C′为正方形,从而得出,再根据等腰直角三角形的性质即可得出答案.
    【详解】
    解:(1)∵△AB′C′的边长变为了△ABC的n倍,
    ∴△ABC∽△AB′C′,
    ∴,
    故答案为:.
    (2)四边形是矩形,
    ∴.

    在中,,



    (3)若四边形 ABB′C′为正方形,
    则,,
    ∴,
    ∴,
    又∵在△ABC中,AB=,
    ∴,

    故答案为:.

    【点睛】
    本题考查了几何变换中的新定义问题,以及相似三角形的判定和性质,理解[θ,n]的意义是解题的关键.
    20、(1)y=﹣5x+350;(2)w=﹣5x2+450x﹣7000(30≤x≤40);(3)当售价定为45元时,商场每周销售这种防尘口罩所获得的利润w(元)最大,最大利润是1元.
    【解析】试题分析:(1)根据题意可以直接写出y与x之间的函数关系式;
    (2)根据题意可以直接写出w与x之间的函数关系式,由供货厂家规定市场价不得低于30元/包,且商场每周完成不少于150包的销售任务可以确定x的取值范围;
    (3)根据第(2)问中的函数解析式和x的取值范围,可以解答本题.
    试题解析:解:(1)由题意可得:y=200﹣(x﹣30)×5=﹣5x+350
    即周销售量y(包)与售价x(元/包)之间的函数关系式是:y=﹣5x+350;
    (2)由题意可得,w=(x﹣20)×(﹣5x+ 350)=﹣5x2+450x﹣7000(30≤x≤70),即商场每周销售这种防尘口罩所获得的利润w(元)与售价x(元/包)之间的函数关系式是:w=﹣5x2+450x﹣7000(30≤x≤40);
    (3)∵w=﹣5x2+450x﹣7000=﹣5(x﹣45)2+1
    ∵二次项系数﹣5<0,∴x=45时,w取得最大值,最大值为1.
    答:当售价定为45元时,商场每周销售这种防尘口罩所获得的利润最大,最大利润是1元.
    点睛:本题考查了二次函数的应用,解题的关键是明确题意,可以写出相应的函数解析式,并确定自变量的取值范围以及可以求出函数的最值.
    21、(1)见解析;(2)①;②cos∠AFE=
    【解析】
    (1)用特殊值法,设,则,证,可求出CF,DF的长,即可求出结论;
    (2)①如图2,过F作交AD于点G,证和是等腰直角三角形,证,求出的值,即可写出的值;②如图3,作交AD于点T,作于H,证,设CF=2,则CE=6,可设AT=x,则TF=3x,,,分别用含x的代数式表示出∠AFE和∠D的余弦值,列出方程,求出x的值,即可求出结论.
    【详解】
    (1)设BE=EC=2,则AB=BC=4,
    ∵,
    ∴,
    ∵,
    ∴∠FEC=∠EAB,
    又∴,
    ∴,
    ∴,
    即,
    ∴CF=1,
    则,
    ∴;
    (2)①如图2,过F作交AD于点G,
    ∵,
    ∴和是等腰直角三角形,
    ∴,,
    ∴∠AGF=∠C,
    又∵,
    ∴∠GAF=∠CFE,
    ∴,
    ∴,
    又∵GF=DF,
    ∴;

    ②如图3,作交AD于点T,作于H,
    则,
    ∴,
    ∴∠ATF=∠C,
    又∵,且∠D=∠AFE,
    ∴∠TAF=∠CFE,
    ∴,
    ∴,
    设CF=2,则CE=6,可设AT=x,则TF=3x,,
    ∴,且,
    由,得,
    解得x=5,
    ∴.

    【点睛】
    本题主要考查了三角形相似的判定及性质的综合应用,熟练掌握三角形相似的判定及性质是解决本题的关键.
    22、AC= 6.0km,AB= 1.7km;
    【解析】
    在Rt△AOC, 由∠的正切值和OC的长求出OA, 在Rt△BOC, 由∠BCO的大小和OC的长求出OA,而AB=OB-0A,即可得到答案。
    【详解】
    由题意可得:∠AOC=90°,OC=5km.
    在Rt△AOC中,
    ∵AC=,
    ∴AC=≈6.0km,
    ∵tan34°=,
    ∴OA=OC•tan34°=5×0.67=3.35km,
    在Rt△BOC中,∠BCO=45°,
    ∴OB=OC=5km,
    ∴AB=5﹣3.35=1.65≈1.7km.
    答:AC的长为6.0km,AB的长为1.7km.
    【点睛】
    本题主要考查三角函数的知识。
    23、10 +
    【解析】
    根据实数的性质进行化简即可计算.
    【详解】
    原式=9-1+2-+6×
    =10-
    =10 +
    【点睛】
    此题主要考查实数的计算,解题的关键是熟知实数的性质.
    24、(1)详见解析;(2)OA=.
    【解析】
    (1)连接OB,证明∠ABE=∠ADB,可得∠ABE=∠BDC,则∠ADB=∠BDC;
    (2)证明△AEB∽△CBD,AB=x,则BD=2x,可求出AB,则答案可求出.
    【详解】
    (1)证明:连接OB,

    ∵BE为⊙O的切线,
    ∴OB⊥BE,
    ∴∠OBE=90°,
    ∴∠ABE+∠OBA=90°,
    ∵OA=OB,
    ∴∠OBA=∠OAB,
    ∴∠ABE+∠OAB=90°,
    ∵AD是⊙O的直径,
    ∴∠OAB+∠ADB=90°,
    ∴∠ABE=∠ADB,
    ∵四边形ABCD的外接圆为⊙O,
    ∴∠EAB=∠C,
    ∵∠E=∠DBC,
    ∴∠ABE=∠BDC,
    ∴∠ADB=∠BDC,
    即DB平分∠ADC;
    (2)解:∵tan∠ABE=,
    ∴设AB=x,则BD=2x,
    ∴,
    ∵∠BAE=∠C,∠ABE=∠BDC,
    ∴△AEB∽△CBD,
    ∴,
    ∴,
    解得x=3,
    ∴AB=x=15,
    ∴OA=.
    【点睛】
    本题考查切线的性质、解直角三角形、勾股定理等知识,解题的关键是学会添加常用辅助线解决问题.

    相关试卷

    江苏省扬州市大丰区第一共同体2021-2022学年中考数学押题试卷含解析:

    这是一份江苏省扬州市大丰区第一共同体2021-2022学年中考数学押题试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,不等式组的解集在数轴上表示为,关于x的方程x2+等内容,欢迎下载使用。

    江苏省扬州市大丰区第一共同体2021-2022学年中考数学模拟试题含解析:

    这是一份江苏省扬州市大丰区第一共同体2021-2022学年中考数学模拟试题含解析,共17页。

    2022年江苏省盐城市大丰区第一共同体达标名校中考押题数学预测卷含解析:

    这是一份2022年江苏省盐城市大丰区第一共同体达标名校中考押题数学预测卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,花园甜瓜是乐陵的特色时令水果,计算-3-1的结果是,的相反数是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map