年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    江苏省扬州市教育科研究院2022年中考数学适应性模拟试题含解析

    江苏省扬州市教育科研究院2022年中考数学适应性模拟试题含解析第1页
    江苏省扬州市教育科研究院2022年中考数学适应性模拟试题含解析第2页
    江苏省扬州市教育科研究院2022年中考数学适应性模拟试题含解析第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省扬州市教育科研究院2022年中考数学适应性模拟试题含解析

    展开

    这是一份江苏省扬州市教育科研究院2022年中考数学适应性模拟试题含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,-的立方根是,《语文课程标准》规定,图为小明和小红两人的解题过程等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    考生请注意:
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.1﹣的相反数是(  )
    A.1﹣ B.﹣1 C. D.﹣1
    2.如图,△ABC中,AB=5,BC=3,AC=4,以点C为圆心的圆与AB相切,则⊙C的半径为( )

    A.2.3 B.2.4 C.2.5 D.2.6
    3.某校航模小分队年龄情况如表所示,则这12名队员年龄的众数、中位数分别是(  )
    年龄(岁)
    12
    13
    14
    15
    16
    人数
    1
    2
    2
    5
    2
    A.2,14岁 B.2,15岁 C.19岁,20岁 D.15岁,15岁
    4.-的立方根是( )
    A.-8 B.-4 C.-2 D.不存在
    5.如图,在平面直角坐标系中,点A在x轴的正半轴上,点B的坐标为(0,4),将△ABO绕点B逆时针旋转60°后得到△A'BO',若函数y=(x>0)的图象经过点O',则k的值为(  )

    A.2 B.4 C.4 D.8
    6.如图,已知射线OM,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以点A为圆心,AO长为半径画弧,两弧交于点B,画射线OB,那么∠AOB的度数是(  )

    A.90° B.60° C.45° D.30°
    7.如图,下列各数中,数轴上点A表示的可能是( )

    A.4的算术平方根 B.4的立方根 C.8的算术平方根 D.8的立方根
    8.《语文课程标准》规定:7﹣9年级学生,要求学会制订自己的阅读计划,广泛阅读各种类型的读物,课外阅读总量不少于260万字,每学年阅读两三部名著.那么260万用科学记数法可表示为(  )
    A.26×105 B.2.6×102 C.2.6×106 D.260×104
    9.图为小明和小红两人的解题过程.下列叙述正确的是( )
    计算:+

    A.只有小明的正确 B.只有小红的正确
    C.小明、小红都正确 D.小明、小红都不正确
    10.一元二次方程x2+x﹣2=0的根的情况是(  )
    A.有两个不相等的实数根 B.有两个相等的实数根
    C.只有一个实数根 D.没有实数根
    11.如图,热气球的探测器显示,从热气球A看一栋楼顶部B的仰角为30°,看这栋楼底部C的俯角为60°,热气球A与楼的水平距离为120米,这栋楼的高度BC为( )

    A.160米 B.(60+160) C.160米 D.360米
    12.分式方程的解为( )
    A.x=-2 B.x=-3 C.x=2 D.x=3
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图1,在平面直角坐标系中,将▱ABCD放置在第一象限,且AB∥x轴,直线y=﹣x从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图象如图2,那么ABCD面积为_____.

    14.当x=_________时,分式的值为零.
    15.不等式组的整数解是_____.
    16.如图,在△ABC中,∠B=40°,∠C=45°,AB的垂直平分线交BC于点D,AC的垂直平分线交BC于点E,则∠DAE=______.

    17.因式分解:-3x2+3x=________.
    18.现有三张分别标有数字2、3、4的卡片,它们除了数字外完全相同,把卡片背面朝上洗匀,从中任意抽取一张,将上面的数字记为a(不放回);从剩下的卡片中再任意抽取一张,将上面的数字记为b,则点(a,b)在直线 图象上的概率为__.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,已知△ABC为等边三角形,点D、E分别在BC、AC边上,且AE=CD,AD与BE相交于点F.
    求证:△ABE≌△CAD;求∠BFD的度数.
    20.(6分)如图,在△ABC中,CD⊥AB于点D,tanA=2cos∠BCD,
    (1)求证:BC=2AD;
    (2)若cosB=,AB=10,求CD的长.

    21.(6分)如图,在平面直角坐标系中,四边形的顶点是坐标原点,点在第一象限,点在第四象限,点在轴的正半轴上,且.
    (1)求点和点的坐标;
    (2)点是线段上的一个动点(点不与点重合) ,以每秒个单位的速度由点向点运动,过点的直线与轴平行,直线交边或边于点,交边或边于点,设点.运动时间为,线段的长度为,已知时,直线恰好过点 .
    ①当时,求关于的函数关系式;
    ②点出发时点也从点出发,以每秒个单位的速度向点运动,点停止时点也停止.设的面积为 ,求与的函数关系式;
    ③直接写出②中的最大值是 .

    22.(8分)由于持续高温和连日无雨,某水库的蓄水量随时间的增加而减少,已知原有蓄水量y1(万m³)与干旱持续时间x(天)的关系如图中线段l1所示,针对这种干旱情况,从第20天开始向水库注水,注水量y2(万m³)与时间(天)的关系如图中线段l2所示(不考虑其他因素).
    (1)求原有蓄水量y1(万m³)与时间(天)的函数关系式,并求当x=20时的水库总蓄水量.
    (2)求当0≤x≤60时,水库的总蓄水量y万(万m³)与时间x(天)的函数关系式(注明x的范围),若总蓄水量不多于900万m³为严重干旱,直接写出发生严重干旱时x的范围.

    23.(8分)(2017江苏省常州市)为了解某校学生的课余兴趣爱好情况,某调查小组设计了“阅读”、“打球”、“书法”和“其他”四个选项,用随机抽样的方法调查了该校部分学生的课余兴趣爱好情况(每个学生必须选一项且只能选一项),并根据调查结果绘制了如下统计图:

    根据统计图所提供的信息,解答下列问题:
    (1)本次抽样调查中的样本容量是 ;
    (2)补全条形统计图;
    (3)该校共有2000名学生,请根据统计结果估计该校课余兴趣爱好为“打球”的学生人数.
    24.(10分)佳佳向探究一元三次方程x3+2x2﹣x﹣2=0的解的情况,根据以往的学习经验,他想到了方程与函数的关系,一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b(k≠0)的解,二次函数y=ax2+bx+c(a≠0)的图象与x轴交点的横坐标即为一元二次方程ax2+bx+c=0(a≠0)的解,如:二次函数y=x2﹣2x﹣3的图象与x轴的交点为(﹣1,0)和(3,0),交点的横坐标﹣1和3即为x2﹣2x﹣3=0的解.
    根据以上方程与函数的关系,如果我们直到函数y=x3+2x2﹣x﹣2的图象与x轴交点的横坐标,即可知方程x3+2x2﹣x﹣2=0的解.
    佳佳为了解函数y=x3+2x2﹣x﹣2的图象,通过描点法画出函数的图象.
    x

    ﹣3

    ﹣2

    ﹣1

    0

    1

    2

    y

    ﹣8

    0

    m

    ﹣2

    0

    12

    (1)直接写出m的值,并画出函数图象;
    (2)根据表格和图象可知,方程的解有   个,分别为   ;
    (3)借助函数的图象,直接写出不等式x3+2x2>x+2的解集.

    25.(10分)(7分)某中学1000名学生参加了”环保知识竞赛“,为了了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取整数,满分为100分)作为样本进行统计,并制作了如图频数分布表和频数分布直方图(不完整且局部污损,其中“■”表示被污损的数据).请解答下列问题:
    成绩分组
    频数
    频率
    50≤x<60
    8
    0.16
    60≤x<70
    12
    a
    70≤x<80

    0.5
    80≤x<90
    3
    0.06
    90≤x≤100
    b
    c
    合计

    1
    (1)写出a,b,c的值;
    (2)请估计这1000名学生中有多少人的竞赛成绩不低于70分;
    (3)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取两名同学参加环保知识宣传活动,求所抽取的2名同学来自同一组的概率.

    26.(12分)先化简,然后从﹣<x<的范围内选取一个合适的整数作为x的值代入求值.
    27.(12分)三辆汽车经过某收费站下高速时,在2个收费通道A,B中,可随机选择其中的一个通过.
    (1)三辆汽车经过此收费站时,都选择A通道通过的概率是   ;
    (2)求三辆汽车经过此收费站时,至少有两辆汽车选择B通道通过的概率.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    根据相反数的的定义解答即可.
    【详解】
    根据a的相反数为-a即可得,1﹣的相反数是﹣1.
    故选B.
    【点睛】
    本题考查了相反数的定义,熟知相反数的定义是解决问题的关键.
    2、B
    【解析】
    试题分析:在△ABC中,∵AB=5,BC=3,AC=4,∴AC2+BC2=32+42=52=AB2,
    ∴∠C=90°,如图:设切点为D,连接CD,∵AB是⊙C的切线,∴CD⊥AB,
    ∵S△ABC=AC×BC=AB×CD,∴AC×BC=AB×CD,即CD===,
    ∴⊙C的半径为,故选B.

    考点:圆的切线的性质;勾股定理.
    3、D
    【解析】
    众数是一组数据中出现次数最多的数据,注意众数可以不只一个;
    找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.
    【详解】
    解:数据1出现了5次,最多,故为众数为1;
    按大小排列第6和第7个数均是1,所以中位数是1.
    故选D.
    【点睛】
    本题主要考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.
    4、C
    【解析】
    分析:首先求出的值,然后根据立方根的计算法则得出答案.
    详解:∵,, ∴的立方根为-2,故选C.
    点睛:本题主要考查的是算术平方根与立方根,属于基础题型.理解算术平方根与立方根的含义是解决本题的关键.
    5、C
    【解析】
    根据题意可以求得点O'的坐标,从而可以求得k的值.
    【详解】
    ∵点B的坐标为(0,4),
    ∴OB=4,
    作O′C⊥OB于点C,
    ∵△ABO绕点B逆时针旋转60°后得到△A'BO',
    ∴O′B=OB=4,
    ∴O′C=4×sin60°=2,BC=4×cos60°=2,
    ∴OC=2,
    ∴点O′的坐标为:(2,2),
    ∵函数y=(x>0)的图象经过点O',
    ∴2=,得k=4,
    故选C.
    【点睛】
    本题考查了反比例函数图象上点的坐标特征、坐标与图形的变化,解题的关键是利用数形结合的思想和反比例函数的性质解答.
    6、B
    【解析】
    首先连接AB,由题意易证得△AOB是等边三角形,根据等边三角形的性质,可求得∠AOB的度数.
    【详解】

    连接AB,
    根据题意得:OB=OA=AB,
    ∴△AOB是等边三角形,
    ∴∠AOB=60°.
    故答案选:B.
    【点睛】
    本题考查了等边三角形的判定与性质,解题的关键是熟练的掌握等边三角形的判定与性质.
    7、C
    【解析】
    解:由题意可知4的算术平方根是2,4的立方根是

    相关试卷

    江苏省扬州市教育科研究院2023-2024学年数学八年级第一学期期末复习检测模拟试题含答案:

    这是一份江苏省扬州市教育科研究院2023-2024学年数学八年级第一学期期末复习检测模拟试题含答案,共7页。试卷主要包含了下列五个命题中,真命题有,下列各数组中,不是勾股数的是等内容,欢迎下载使用。

    江苏省扬州市教育科研究院2022-2023学年七下数学期末达标检测模拟试题含答案:

    这是一份江苏省扬州市教育科研究院2022-2023学年七下数学期末达标检测模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。

    江苏省扬州市教育科研究院2021-2022学年中考数学五模试卷含解析:

    这是一份江苏省扬州市教育科研究院2021-2022学年中考数学五模试卷含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁,不等式组的解集在数轴上可表示为等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map