江苏省镇江市2021-2022学年中考联考数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.如图,△ABC中,AB=AC,BC=12cm,点D在AC上,DC=4cm,将线段DC沿CB方向平移7cm得到线段EF,点E、F分别落在边AB、BC上,则△EBF的周长是( )cm.
A.7 B.11 C.13 D.16
2.实数在数轴上的点的位置如图所示,则下列不等关系正确的是( )
A.a+b>0 B.a-b<0 C.<0 D.>
3.如图,将含60°角的直角三角板ABC绕顶点A顺时针旋转45°度后得到△AB′C′,点B经过的路径为弧BB′,若∠BAC=60°,AC=1,则图中阴影部分的面积是( )
A. B. C. D.π
4.完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n、m的大矩形,则图中阴影部分的周长是( )
A.6(m﹣n) B.3(m+n) C.4n D.4m
5.若分式 有意义,则x的取值范围是
A.x>1 B.x<1 C.x≠1 D.x≠0
6.下列运算正确的是( )
A.﹣3a+a=﹣4a B.3x2•2x=6x2
C.4a2﹣5a2=a2 D.(2x3)2÷2x2=2x4
7.如图,A,C,E,G四点在同一直线上,分别以线段AC,CE,EG为边在AG同侧作等边三角形△ABC,△CDE,△EFG,连接AF,分别交BC,DC,DE于点H,I,J,若AC=1,CE=2,EG=3,则△DIJ的面积是( )
A. B. C. D.
8.如图所示,在平面直角坐标系中A(0,0),B(2,0),△AP1B是等腰直角三角形,且∠P1=90°,把△AP1B绕点B顺时针旋转180°,得到△BP2C;把△BP2C绕点C顺时针旋转180°,得到△CP3D,依此类推,则旋转第2017次后,得到的等腰直角三角形的直角顶点P2018的坐标为( )
A.(4030,1) B.(4029,﹣1)
C.(4033,1) D.(4035,﹣1)
9.某班要推选学生参加学校的“诗词达人”比赛,有7名学生报名参加班级选拔赛,他们的选拔赛成绩各不相同,现取其中前3名参加学校比赛.小红要判断自己能否参加学校比赛,在知道自己成绩的情况下,还需要知道这7名学生成绩的( )
A.众数 B.中位数 C.平均数 D.方差
10.如图,将矩形沿对角线折叠,使落在处,交于,则下列结论不一定成立的是( )
A. B.
C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC、CD上滑动,且E、F不与B、C、D重合.当点E、F在BC、CD上滑动时,则△CEF的面积最大值是____.
12.小华到商场购买贺卡,他身上带的钱恰好能买5张3D立体贺卡或20张普通贺卡若小华先买了3张3D立体贺卡,则剩下的钱恰好还能买______张普通贺卡.
13.如图,点M、N分别在∠AOB的边OA、OB上,将∠AOB沿直线MN翻折,设点O落在点P处,如果当OM=4,ON=3时,点O、P的距离为4,那么折痕MN的长为______.
14.如图,在一次数学活动课上,小明用18个棱长为1的正方体积木搭成一个几何体,然后他请小亮用其他棱长为1的正方体积木在旁边再搭一个几何体,使小亮所搭几何体恰好和小明所搭几何体拼成一个无空隙的大长方体(不改变小明所搭几何体的形状).请从下面的A、B两题中任选一题作答,我选择__________.
A、按照小明的要求搭几何体,小亮至少需要__________个正方体积木.
B、按照小明的要求,小亮所搭几何体的表面积最小为__________.
15.口袋中装有4个小球,其中红球3个,黄球1个,从中随机摸出两球,都是红球的概率为_________.
16.如图,将边长为1的正方形的四条边分别向外延长一倍,得到第二个正方形,将第二个正方形的四条边分别向外延长一倍得到第三个正方形,…,则第2018个正方形的面积为_____.
三、解答题(共8题,共72分)
17.(8分)如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF,
求证:AF=DC;若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.
18.(8分)观察下列各式:
①
②
③
由此归纳出一般规律__________.
19.(8分)在矩形ABCD中,AB=6,AD=8,点E是边AD上一点,EM⊥EC交AB于点M,点N在射线MB上,且AE是AM和AN的比例中项.
如图1,求证:∠ANE=∠DCE;如图2,当点N在线段MB之间,联结AC,且AC与NE互相垂直,求MN的长;连接AC,如果△AEC与以点E、M、N为顶点所组成的三角形相似,求DE的长.
20.(8分)如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和点B,与y轴交于C(0,3),直线y=+m经过点C,与抛物线的另一交点为点D,点P是直线CD上方抛物线上的一个动点,过点P作PF⊥x轴于点F,交直线CD于点E,设点P的横坐标为m.
(1)求抛物线解析式并求出点D的坐标;
(2)连接PD,△CDP的面积是否存在最大值?若存在,请求出面积的最大值;若不存在,请说明理由;
(3)当△CPE是等腰三角形时,请直接写出m的值.
21.(8分)如图,在四边形ABCD中,∠A=∠BCD=90°,,CE⊥AD于点E.
(1)求证:AE=CE;
(2)若tanD=3,求AB的长.
22.(10分)《孙子算经》是中国传统数学的重要著作之一,其中记载的“荡杯问题”很有趣.《孙子算经》记载“今有妇人河上荡杯.津吏问曰:‘杯何以多?’妇人曰:‘家有客.’津吏曰:‘客几何?’妇人曰:‘二人共饭,三人共羹,四人共肉,凡用杯六十五.’不知客几何?”译文:“2人同吃一碗饭,3人同吃一碗羹,4人同吃一碗肉,共用65个碗,问有多少客人?”
23.(12分)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元.经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:
售价x/(元/千克)
50
60
70
销售量y/千克
100
80
60
(1)求y与x之间的函数表达式;设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入-成本);试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少时获得最大利润,最大利润是多少?
24.某校师生到距学校20千米的公路旁植树,甲班师生骑自行车先走,45分钟后,乙班师生乘汽车出发,结果两班师生同时到达,已知汽车的速度是自行车速度的2.5倍,求两种车的速度各是多少?
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
直接利用平移的性质得出EF=DC=4cm,进而得出BE=EF=4cm,进而求出答案.
【详解】
∵将线段DC沿着CB的方向平移7cm得到线段EF,
∴EF=DC=4cm,FC=7cm,
∵AB=AC,BC=12cm,
∴∠B=∠C,BF=5cm,
∴∠B=∠BFE,
∴BE=EF=4cm,
∴△EBF的周长为:4+4+5=13(cm).
故选C.
【点睛】
此题主要考查了平移的性质,根据题意得出BE的长是解题关键.
2、C
【解析】
根据点在数轴上的位置,可得a,b的关系,根据有理数的运算,可得答案.
【详解】
解:由数轴,得b<-1,0<a<1.
A、a+b<0,故A错误;
B、a-b>0,故B错误;
C、<0,故C符合题意;
D、a2<1<b2,故D错误;
故选C.
【点睛】
本题考查了实数与数轴,利用点在数轴上的位置得出b<-1,0<a<1是解题关键,又利用了有理数的运算.
3、A
【解析】
试题解析:如图,
∵在Rt△ABC中,∠ACB=90°,∠BAC=60°,AC=1,
∴BC=ACtan60°=1×=,AB=2
∴S△ABC=AC•BC=.
根据旋转的性质知△ABC≌△AB′C′,则S△ABC=S△AB′C′,AB=AB′.
∴S阴影=S扇形ABB′+S△AB′C′-S△ABC
=
=.
故选A.
考点:1.扇形面积的计算;2.旋转的性质.
4、D
【解析】
解:设小长方形的宽为a,长为b,则有b=n-3a,
阴影部分的周长:
2(m-b)+2(m-3a)+2n=2m-2b+2m-6a+2n=4m-2(n-3a)-6a+2n=4m-2n+6a-6a+2n=4m.
故选D.
5、C
【解析】
分式分母不为0,所以,解得.
故选:C.
6、D
【解析】
根据合并同类项、单项式的乘法、积的乘方和单项式的乘法逐项计算,结合排除法即可得出答案.
【详解】
A. ﹣3a+a=﹣2a,故不正确;
B. 3x2•2x=6x3,故不正确;
C. 4a2﹣5a2=-a2 ,故不正确;
D. (2x3)2÷2x2=4x6÷2x2=2x4,故正确;
故选D.
【点睛】
本题考查了合并同类项、单项式的乘法、积的乘方和单项式的乘法,熟练掌握它们的运算法则是解答本题的关键.
7、A
【解析】
根据等边三角形的性质得到FG=EG=3,∠AGF=∠FEG=60°,根据三角形的内角和得到∠AFG=90°,根据相似三角形的性质得到==,==,根据三角形的面积公式即可得到结论.
【详解】
∵AC=1,CE=2,EG=3,
∴AG=6,
∵△EFG是等边三角形,
∴FG=EG=3,∠AGF=∠FEG=60°,
∵AE=EF=3,
∴∠FAG=∠AFE=30°,
∴∠AFG=90°,
∵△CDE是等边三角形,
∴∠DEC=60°,
∴∠AJE=90°,JE∥FG,
∴△AJE∽△AFG,
∴==,
∴EJ=,
∵∠BCA=∠DCE=∠FEG=60°,
∴∠BCD=∠DEF=60°,
∴∠ACI=∠AEF=120°,
∵∠IAC=∠FAE,
∴△ACI∽△AEF,
∴==,
∴CI=1,DI=1,DJ=,
∴IJ=,
∴=•DI•IJ=××.
故选:A.
【点睛】
本题考查了等边三角形的性质,相似三角形的判定和性质,三角形的面积的计算,熟练掌握相似三角形的性质和判定是解题的关键.
8、D
【解析】
根据题意可以求得P1,点P2,点P3的坐标,从而可以发现其中的变化的规律,从而可以求得P2018的坐标,本题得以解决.
【详解】
解:由题意可得,
点P1(1,1),点P2(3,-1),点P3(5,1),
∴P2018的横坐标为:2×2018-1=4035,纵坐标为:-1,
即P2018的坐标为(4035,-1),
故选:D.
【点睛】
本题考查了点的坐标变化规律,解答本题的关键是发现各点的变化规律,求出相应的点的坐标.
9、B
【解析】
由于总共有7个人,且他们的成绩互不相同,第4的成绩是中位数,要判断自己能否参加学校比赛,只需知道中位数即可.
【详解】
由于总共有7个人,且他们的成绩互不相同,第4的成绩是中位数,要判断自己能否参加学校比赛,故应知道中位数是多少.
故选B.
【点睛】
本题考查了统计的有关知识,掌握平均数、中位数、众数、方差的意义是解题的关键.
10、C
【解析】
分析:主要根据折叠前后角和边相等对各选项进行判断,即可选出正确答案.
详解:A、BC=BC′,AD=BC,∴AD=BC′,所以A正确.
B、∠CBD=∠EDB,∠CBD=∠EBD,∴∠EBD=∠EDB,所以B正确.
D、∵sin∠ABE=,
∵∠EBD=∠EDB
∴BE=DE
∴sin∠ABE=.
由已知不能得到△ABE∽△CBD.故选C.
点睛:本题可以采用排除法,证明A,B,D都正确,所以不正确的就是C,排除法也是数学中一种常用的解题方法.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、
【解析】
解:如图,连接AC,∵四边形ABCD为菱形,∠BAD=120°,∠1+∠EAC=60°,∠3+∠EAC=60°,∴∠1=∠3,∵∠BAD=120°,∴∠ABC=60°,∴△ABC和△ACD为等边三角形,∴∠4=60°,AC=AB.
在△ABE和△ACF中,∵∠1=∠3,AC=AC,∠ABC=∠4,∴△ABE≌△ACF(ASA),∴S△ABE=S△ACF,∴S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC,是定值,作AH⊥BC于H点,则BH=2,∴S四边形AECF=S△ABC=BC•AH=BC•=,由“垂线段最短”可知:当正三角形AEF的边AE与BC垂直时,边AE最短,∴△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又∵S△CEF=S四边形AECF﹣S△AEF,则此时△CEF的面积就会最大,∴S△CEF=S四边形AECF﹣S△AEF=﹣×× =.
故答案为:.
点睛:本题主要考查了菱形的性质、全等三角形判定与性质及三角形面积的计算,根据△ABE≌△ACF,得出四边形AECF的面积是定值是解题的关键.
12、1
【解析】
根据已知他身上带的钱恰好能买5张3D立体贺卡或20张普通贺卡得:1张3D立体贺卡的单价是1张普通贺卡单价的4倍,所以设1张3D立体贺卡x元,剩下的钱恰好还能买y张普通贺卡,根据3张3D立体贺卡张普通贺卡张3D立体贺卡,可得结论.
【详解】
解:设1张3D立体贺卡x元,剩下的钱恰好还能买y张普通贺卡.
则1张普通贺卡为:元,
由题意得:,
,
答:剩下的钱恰好还能买1张普通贺卡.
故答案为:1.
【点睛】
本题考查了一元一次方程的应用以及列代数式,解题的关键是:根据总价单价数量列式计算.
13、
【解析】
由折叠的性质可得MN⊥OP,EO=EP=2,由勾股定理可求ME,NE的长,即可求MN的长.
【详解】
设MN与OP交于点E,
∵点O、P的距离为4,
∴OP=4
∵折叠
∴MN⊥OP,EO=EP=2,
在Rt△OME中,ME=
在Rt△ONE中,NE=
∴MN=ME-NE=2-
故答案为2-
【点睛】
本题考查了翻折变换,勾股定理,利用勾股定理求线段的长度是本题的关键.
14、A, 18, 1
【解析】
A、首先确定小明所搭几何体所需的正方体的个数,然后确定两人共搭建几何体所需小立方体的数量,求差即可;
B、分别得到前后面,上下面,左右面的面积,相加即可求解.
【详解】
A、∵小亮所搭几何体恰好可以和小明所搭几何体拼成一个无缝隙的大长方体,
∴该长方体需要小立方体4×32=36个,
∵小明用18个边长为1的小正方体搭成了一个几何体,
∴小亮至少还需36-18=18个小立方体,
B、表面积为:2×(8+8+7)=1.
故答案是:A,18,1.
【点睛】
考查了由三视图判断几何体的知识,能够确定两人所搭几何体的形状是解答本题的关键.
15、
【解析】
先画出树状图,用随意摸出两个球是红球的结果个数除以所有可能的结果个数即可.
【详解】
∵从中随意摸出两个球的所有可能的结果个数是12,
随意摸出两个球是红球的结果个数是6,
∴从中随意摸出两个球的概率=;
故答案为:.
【点睛】
此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
16、1
【解析】
先分别求出第1个、第2个、第3个正方形的面积,由此总结规律,得到第n个正方形的面积,将n=2018代入即可求出第2018个正方形的面积.
【详解】
:∵第1个正方形的面积为:1+4××2×1=5=51;
第2个正方形的面积为:5+4××2×=25=52;
第3个正方形的面积为:25+4××2×=125=53;
…
∴第n个正方形的面积为:5n;
∴第2018个正方形的面积为:1.
故答案为1.
【点睛】
本题考查了规律型:图形的变化类,解题的关键是得到第n个正方形的面积.
三、解答题(共8题,共72分)
17、(1)见解析(2)见解析
【解析】
(1)根据AAS证△AFE≌△DBE,推出AF=BD,即可得出答案.
(2)得出四边形ADCF是平行四边形,根据直角三角形斜边上中线性质得出CD=AD,根据菱形的判定推出即可.
【详解】
解:(1)证明:∵AF∥BC,
∴∠AFE=∠DBE.
∵E是AD的中点,AD是BC边上的中线,
∴AE=DE,BD=CD.
在△AFE和△DBE中,
∵∠AFE=∠DBE,∠FEA=∠BED, AE=DE,
∴△AFE≌△DBE(AAS)
∴AF=BD.
∴AF=DC.
(2)四边形ADCF是菱形,证明如下:
∵AF∥BC,AF=DC,
∴四边形ADCF是平行四边形.
∵AC⊥AB,AD是斜边BC的中线,
∴AD=DC.
∴平行四边形ADCF是菱形
18、xn+1-1
【解析】
试题分析:观察其右边的结果:第一个是﹣1;第二个是﹣1;…依此类推,则第n个的结果即可求得.
试题解析:(x﹣1)(++…x+1)=.
故答案为.
考点:平方差公式.
19、(1)见解析;(2);(1)DE的长分别为或1.
【解析】
(1)由比例中项知,据此可证△AME∽△AEN得∠AEM=∠ANE,再证∠AEM=∠DCE可得答案;
(2)先证∠ANE=∠EAC,结合∠ANE=∠DCE得∠DCE=∠EAC,从而知,据此求得AE=8﹣=,由(1)得∠AEM=∠DCE,据此知,求得AM=,由求得MN=;
(1)分∠ENM=∠EAC和∠ENM=∠ECA两种情况分别求解可得.
【详解】
解:(1)∵AE是AM和AN的比例中项
∴,
∵∠A=∠A,
∴△AME∽△AEN,
∴∠AEM=∠ANE,
∵∠D=90°,
∴∠DCE+∠DEC=90°,
∵EM⊥BC,
∴∠AEM+∠DEC=90°,
∴∠AEM=∠DCE,
∴∠ANE=∠DCE;
(2)∵AC与NE互相垂直,
∴∠EAC+∠AEN=90°,
∵∠BAC=90°,
∴∠ANE+∠AEN=90°,
∴∠ANE=∠EAC,
由(1)得∠ANE=∠DCE,
∴∠DCE=∠EAC,
∴tan∠DCE=tan∠DAC,
∴,
∵DC=AB=6,AD=8,
∴DE=,
∴AE=8﹣=,
由(1)得∠AEM=∠DCE,
∴tan∠AEM=tan∠DCE,
∴,
∴AM=,
∵,
∴AN=,
∴MN=;
(1)∵∠NME=∠MAE+∠AEM,∠AEC=∠D+∠DCE,
又∠MAE=∠D=90°,由(1)得∠AEM=∠DCE,
∴∠AEC=∠NME,
当△AEC与以点E、M、N为顶点所组成的三角形相似时
①∠ENM=∠EAC,如图2,
∴∠ANE=∠EAC,
由(2)得:DE=;
②∠ENM=∠ECA,
如图1,
过点E作EH⊥AC,垂足为点H,
由(1)得∠ANE=∠DCE,
∴∠ECA=∠DCE,
∴HE=DE,
又tan∠HAE=,
设DE=1x,则HE=1x,AH=4x,AE=5x,
又AE+DE=AD,
∴5x+1x=8,
解得x=1,
∴DE=1x=1,
综上所述,DE的长分别为或1.
【点睛】
本题是相似三角形的综合问题,解题的关键是掌握相似三角形的判定与性质、三角函数的应用等知识点.
20、(1)y=﹣x2+2x+3,D点坐标为();(2)当m=时,△CDP的面积存在最大值,最大值为;(3)m的值为 或 或.
【解析】
(1)利用待定系数法求抛物线解析式和直线CD的解析式,然后解方程组得D点坐标;
(2)设P(m,-m2+2m+3),则E(m,-m+3),则PE=-m2+m,利用三角形面积公式得到S△PCD=××(-m2+m)=-m2+m,然后利用二次函数的性质解决问题;
(3)讨论:当PC=PE时,m2+(-m2+2m+3-3)2=(-m2+m)2;当CP=CE时,m2+(-m2+2m+3-3)2=m2+(-m+3-3)2;当EC=EP时,m2+(-m+3-3)2=(-m2+m)2,然后分别解方程即可得到满足条件的m的值.
【详解】
(1)把A(﹣1,0),C(0,3)分别代入y=﹣x2+bx+c得,解得,
∴抛物线的解析式为y=﹣x2+2x+3;
把C(0,3)代入y=﹣x+n,解得n=3,
∴直线CD的解析式为y=﹣x+3,
解方程组,解得
或,
∴D点坐标为(,);
(2)存在.
设P(m,﹣m2+2m+3),则E(m,﹣m+3),
∴PE=﹣m2+2m+3﹣(﹣m+3)=﹣m2+m,
∴S△PCD=••(﹣m2+m)=﹣m2+m=﹣(m﹣)2+,
当m=时,△CDP的面积存在最大值,最大值为;
(3)当PC=PE时,m2+(﹣m2+2m+3﹣3)2=(﹣m2+m)2,解得m=0(舍去)或m=;
当CP=CE时,m2+(﹣m2+2m+3﹣3)2=m2+(﹣m+3﹣3)2,解得m=0(舍去)或m=(舍去)或m=;
当EC=EP时,m2+(﹣m+3﹣3)2=(﹣m2+m)2,解得m=(舍去)或m=,
综上所述,m的值为或或.
【点睛】
本题考核知识点:二次函数的综合应用. 解题关键点:灵活运用二次函数性质,运用数形结合思想.
21、(1)见解析;(2)AB=4
【解析】
(1)过点B作BF⊥CE于F,根据同角的余角相等求出∠BCF=∠D,再利用“角角边”证明△BCF和△CDE全等,根据全等三角形对应边相等可得BF=CE,再证明四边形AEFB是矩形,根据矩形的对边相等可得AE=BF,从而得证;
(2)由(1)可知:CF=DE,四边形AEFB是矩形,从而求得AB=EF,利用锐角三角函数的定义得出DE和CE的长,即可求得AB的长.
【详解】
(1)证明:
过点B作BH⊥CE于H,如图1.
∵CE⊥AD,
∴∠BHC=∠CED=90°,∠1+∠D=90°.
∵∠BCD=90°,
∴∠1+∠2=90°,
∴∠2=∠D.
又BC=CD
∴△BHC≌△CED(AAS).
∴BH=CE.
∵BH⊥CE,CE⊥AD,∠A=90°,
∴四边形ABHE是矩形,
∴AE=BH.
∴AE=CE.
(2)∵四边形ABHE是矩形,
∴AB=HE.
∵在Rt△CED中,,
设DE=x,CE=3x,
∴.
∴x=2.
∴DE=2,CE=3.
∵CH=DE=2.
∴AB=HE=3-2=4.
【点睛】
本题考查了全等三角形的判定与性质,矩形的判定与性质,锐角三角函数的定义,难度中等,作辅助线构造出全等三角形与矩形是解题的关键.
22、x=60
【解析】
设有x个客人,根据题意列出方程,解出方程即可得到答案.
【详解】
解:设有x个客人,则
解得:x=60;
∴有60个客人.
【点睛】
本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.
23、 (1)y=-2x+200 (2)W=-2x2+280x-8 000(3)售价为70元时,获得最大利润,这时最大利润为1 800元.
【解析】
(1)用待定系数法求一次函数的表达式;
(2)利用利润的定义,求与之间的函数表达式;
(3)利用二次函数的性质求极值.
【详解】
解:(1)设,由题意,得,解得,∴所求函数表达式为.
(2).
(3),其中,∵,
∴当时,随的增大而增大,当时,随的增大而减小,当售价为70元时,获得最大利润,这时最大利润为1800元.
考点: 二次函数的实际应用.
24、自行车速度为16千米/小时,汽车速度为40千米/小时.
【解析】
设自行车速度为x千米/小时,则汽车速度为2.5x千米/小时,根据甲班师生骑自行车先走,45分钟后,乙班师生乘汽车出发,结果同时到达,即可列方程求解.
【详解】
设自行车速度为x千米/小时,则汽车速度为2.5x千米/小时,由题意得
,
解得x=16,
经检验x=16适合题意,
2.5x=40,
答:自行车速度为16千米/小时,汽车速度为40千米/小时.
江苏省镇江市新区重点中学2021-2022学年中考五模数学试题含解析: 这是一份江苏省镇江市新区重点中学2021-2022学年中考五模数学试题含解析,共17页。试卷主要包含了若=1,则符合条件的m有,-5的倒数是,计算等内容,欢迎下载使用。
江苏省镇江市外国语校2022年中考联考数学试题含解析: 这是一份江苏省镇江市外国语校2022年中考联考数学试题含解析,共23页。试卷主要包含了答题时请按要求用笔,2cs 30°的值等于,下列运算正确的,若分式有意义,则a的取值范围是等内容,欢迎下载使用。
2021-2022学年江苏省镇江市丹徒区宜城中学十校联考最后数学试题含解析: 这是一份2021-2022学年江苏省镇江市丹徒区宜城中学十校联考最后数学试题含解析,共21页。试卷主要包含了在平面直角坐标系中,将点P等内容,欢迎下载使用。