江苏省镇江市丹徒区宜城中学2022年中考一模数学试题含解析
展开
这是一份江苏省镇江市丹徒区宜城中学2022年中考一模数学试题含解析,共26页。试卷主要包含了考生必须保证答题卡的整洁,已知反比例函数下列结论正确的是,点P等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.下列计算正确的是( ).
A.(x+y)2=x2+y2 B.(-xy2)3=- x3y6
C.x6÷x3=x2 D.=2
2.如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是( )
A.8 B.9 C.10 D.11
3.的相反数是
A.4 B. C. D.
4.我国古代数学著作《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五,屈绳量之,不足一尺,问木长几何。”大致意思是:“用一根绳子去量一根木条,绳长剩余4.5尺,将绳子对折再量木条,木条剩余一尺,问木条长多少尺”,设绳子长尺,木条长尺,根据题意所列方程组正确的是( )
A. B. C. D.
5.下列几何体中,主视图和左视图都是矩形的是( )
A. B. C. D.
6.已知反比例函数下列结论正确的是( )
A.图像经过点(-1,1) B.图像在第一、三象限
C.y 随着 x 的增大而减小 D.当 x > 1时, y < 1
7.如图1,点E为矩形ABCD的边AD上一点,点P从点B出发沿BE→ED→DC运动到点C停止,点Q从点B出发沿BC运动到点C停止,它们运动的速度都是1cm/s.若点P、Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2),已知y与t之间的函数图象如图2所示.给出下列结论:①当0<t≤10时,△BPQ是等腰三角形;②S△ABE=48cm2;③14<t<22时,y=110﹣1t;④在运动过程中,使得△ABP是等腰三角形的P点一共有3个;⑤当△BPQ与△BEA相似时,t=14.1.其中正确结论的序号是( )
A.①④⑤ B.①②④ C.①③④ D.①③⑤
8.点P(4,﹣3)关于原点对称的点所在的象限是( )
A.第四象限 B.第三象限 C.第二象限 D.第一象限
9.下列各类数中,与数轴上的点存在一一对应关系的是( )
A.有理数 B.实数 C.分数 D.整数
10.根据文化和旅游部发布的《“五一”假日旅游指南》,今年“五一”期间居民出游意愿达36.6%,预计“五一”期间全固有望接待国内游客1.49亿人次,实现国内旅游收入880亿元.将880亿用科学记数法表示应为( )
A.8×107 B.880×108 C.8.8×109 D.8.8×1010
11.如图,Rt△ABC中,∠ACB=90°,AB=5,AC=4,CD⊥AB于D,则tan∠BCD的值为( )
A. B. C. D.
12.如图是由三个相同的小正方体组成的几何体,则该几何体的左视图是( )
A. B. C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.内接于圆,设,圆的半径为,则所对的劣弧长为_____(用含的代数式表示).
14.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架,其中方程术是重要的数学成就.书中有一个方程问题:今有醇酒一斗,直钱五十;行酒一斗,直钱一十.今将钱三十,得酒二斗.问醇、行酒各得几何?意思是:今有美酒一斗,价格是50钱;普通酒一斗,价格是10钱.现在买两种酒2斗共付30钱,问买美酒、普通酒各多少?设买美酒x斗,买普通酒y斗,则可列方程组为______________.
15.分解因式:4ax2-ay2=________________.
16.如图,ABCD是菱形,AC是对角线,点E是AB的中点,过点E作对角线AC的垂线,垂足是点M,交AD边于点F,连结DM.若∠BAD=120°,AE=2,则DM=__.
17.小明把一副含45°,30°的直角三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等于_____.
18.在Rt△ABC中,∠ACB=90°,AC=8,BC=6,点D是以点A为圆心4为半径的圆上一点,连接BD,点M为BD中点,线段CM长度的最大值为_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,吊车在水平地面上吊起货物时,吊绳BC与地面保持垂直,吊臂AB与水平线的夹角为64°,吊臂底部A距地面1.5m.(计算结果精确到0.1m,参考数据sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)
(1)当吊臂底部A与货物的水平距离AC为5m时,吊臂AB的长为 m.
(2)如果该吊车吊臂的最大长度AD为20m,那么从地面上吊起货物的最大高度是多少?(吊钩的长度与货物的高度忽略不计)
20.(6分)如图,在平面直角坐标系中,四边形OABC为矩形,直线y=kx+b交BC于点E(1,m),交AB于点F(4,),反比例函数y=(x>0)的图象经过点E,F.
(1)求反比例函数及一次函数解析式;
(2)点P是线段EF上一点,连接PO、PA,若△POA的面积等于△EBF的面积,求点P的坐标.
21.(6分)如图,在Rt△ABC的顶点A、B在x轴上,点C在y轴上正半轴上,且
A(-1,0),B(4,0),∠ACB=90°.
(1)求过A、B、C三点的抛物线解析式;
(2)设抛物线的对称轴l与BC边交于点D,若P是对称轴l上的点,且满足以P、C、D为顶点的三角形与△AOC相似,求P点的坐标;
(3)在对称轴l和抛物线上是否分别存在点M、N,使得以A、O、M、N为顶点的四边形是平行四边形,若存在请直接写出点M、点N的坐标;若不存在,请说明理由.
图1 备用图
22.(8分)如图,一次函数y=kx+b与反比例函数y=的图象相较于A(2,3),B(﹣3,n)两点.求一次函数与反比例函数的解析式;根据所给条件,请直接写出不等式kx+b>的解集;过点B作BC⊥x轴,垂足为C,求S△ABC.
23.(8分)已知二次函数 y=mx2﹣2mx+n 的图象经过(0,﹣3).
(1)n= _____________;
(2) 若二次函数 y=mx2﹣2mx+n 的图象与 x 轴有且只有一个交点,求 m 值;
(3) 若二次函数 y=mx2﹣2mx+n 的图象与平行于 x 轴的直线 y=5 的一个交点的横坐标为4,则另一个交点的坐标为 ;
(4) 如图,二次函数 y=mx2﹣2mx+n 的图象经过点 A(3,0),连接 AC,点 P 是抛物线位于线段 AC 下方图象上的任意一点,求△PAC 面积的最大值.
24.(10分)已知抛物线y=ax2+bx+2过点A(5,0)和点B(﹣3,﹣4),与y轴交于点C.
(1)求抛物线y=ax2+bx+2的函数表达式;
(2)求直线BC的函数表达式;
(3)点E是点B关于y轴的对称点,连接AE、BE,点P是折线EB﹣BC上的一个动点,
①当点P在线段BC上时,连接EP,若EP⊥BC,请直接写出线段BP与线段AE的关系;
②过点P作x轴的垂线与过点C作的y轴的垂线交于点M,当点M不与点C重合时,点M关于直线PC的对称点为点M′,如果点M′恰好在坐标轴上,请直接写出此时点P的坐标.
25.(10分)如图,在Rt△ABC中,AB=AC,D、E是斜边BC上的两点,∠EAD=45°,将△ADC绕点A顺时针旋转90°,得到△AFB,连接EF.求证:EF=ED;若AB=2,CD=1,求FE的长.
26.(12分)解不等式组,并写出该不等式组的最大整数解.
27.(12分)为营造浓厚的创建全国文明城市氛围,东营市某中学委托制衣厂制作“最美东营人”和“最美志愿者”两款文化衫.若制作“最美东营人”文化衫2件,“最美志愿者”文化衫3件,共需90元;制作“最美东营人”文化衫3件,“最美志愿者”5件,共需145元.
(1)求“最美东营人”和“最美志愿者”两款文化衫每件各多少元?
(2)若该中学要购进“最美东营人”和“最美志愿者”两款文化衫共90件,总费用少于1595元,并且“最美东营人”文化衫的数量少于“最美志愿者”文化衫的数量,那么该中学有哪几种购买方案?
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
分析:根据完全平方公式、积的乘方法则、同底数幂的除法法则和算术平方根的定义计算,判断即可.
详解:(x+y)2=x2+2xy+y2,A错误;
(-xy2)3=-x3y6,B错误;
x6÷x3=x3,C错误;
==2,D正确;
故选D.
点睛:本题考查的是完全平方公式、积的乘方、同底数幂的除法以及算术平方根的计算,掌握完全平方公式、积的乘方法则、同底数幂的除法法则和算术平方根的定义是解题的关键.
2、A
【解析】
分析:根据多边形的内角和公式及外角的特征计算.
详解:多边形的外角和是360°,根据题意得:
110°•(n-2)=3×360°
解得n=1.
故选A.
点睛:本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.
3、A
【解析】
直接利用相反数的定义结合绝对值的定义分析得出答案.
【详解】
-1的相反数为1,则1的绝对值是1.
故选A.
【点睛】
本题考查了绝对值和相反数,正确把握相关定义是解题的关键.
4、A
【解析】
本题的等量关系是:绳长-木长=4.5;木长-×绳长=1,据此列方程组即可求解.
【详解】
设绳子长x尺,木条长y尺,依题意有
.
故选A.
【点睛】
本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的二元一次方程组.
5、C
【解析】
主视图、左视图是分别从物体正面、左面和上面看,所得到的图形.依此即可求解.
【详解】
A. 主视图为圆形,左视图为圆,故选项错误;
B. 主视图为三角形,左视图为三角形,故选项错误;
C. 主视图为矩形,左视图为矩形,故选项正确;
D. 主视图为矩形,左视图为圆形,故选项错误.
故答案选:C.
【点睛】
本题考查的知识点是截一个几何体,解题的关键是熟练的掌握截一个几何体.
6、B
【解析】
分析:直接利用反比例函数的性质进而分析得出答案.
详解:A.反比例函数y=,图象经过点(﹣1,﹣1),故此选项错误;
B.反比例函数y=,图象在第一、三象限,故此选项正确;
C.反比例函数y=,每个象限内,y随着x的增大而减小,故此选项错误;
D.反比例函数y=,当x>1时,0<y<1,故此选项错误.
故选B.
点睛:本题主要考查了反比例函数的性质,正确掌握反比例函数的性质是解题的关键.
7、D
【解析】
根据题意,得到P、Q分别同时到达D、C可判断①②,分段讨论PQ位置后可以判断③,再由等腰三角形的分类讨论方法确定④,根据两个点的相对位置判断点P在DC上时,存在△BPQ与△BEA相似的可能性,分类讨论计算即可.
【详解】
解:由图象可知,点Q到达C时,点P到E则BE=BC=10,ED=4
故①正确
则AE=10﹣4=6
t=10时,△BPQ的面积等于
∴AB=DC=8
故
故②错误
当14<t<22时,
故③正确;
分别以A、B为圆心,AB为半径画圆,将两圆交点连接即为AB垂直平分线
则⊙A、⊙B及AB垂直平分线与点P运行路径的交点是P,满足△ABP是等腰三角形
此时,满足条件的点有4个,故④错误.
∵△BEA为直角三角形
∴只有点P在DC边上时,有△BPQ与△BEA相似
由已知,PQ=22﹣t
∴当或时,△BPQ与△BEA相似
分别将数值代入
或,
解得t=(舍去)或t=14.1
故⑤正确
故选:D.
【点睛】
本题是动点问题的函数图象探究题,考查了三角形相似判定、等腰三角
形判定,应用了分类讨论和数形结合的数学思想.
8、C
【解析】
由题意得点P的坐标为(﹣4,3),根据象限内点的符号特点可得点P1的所在象限.
【详解】
∵设P(4,﹣3)关于原点的对称点是点P1,
∴点P1的坐标为(﹣4,3),
∴点P1在第二象限.
故选 C
【点睛】
本题主要考查了两点关于原点对称,这两点的横纵坐标均互为相反数;符号为(﹣,+)的点在第二象限.
9、B
【解析】
根据实数与数轴上的点存在一一对应关系解答.
【详解】
实数与数轴上的点存在一一对应关系,
故选:B.
【点睛】
本题考查了实数与数轴上点的关系,每一个实数都可以用数轴上唯一的点来表示,反过来,数轴上的每个点都表示一个唯一的实数,也就是说实数与数轴上的点一一对应.
10、D
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
880亿=880 0000 0000=8.8×1010,
故选D.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
11、D
【解析】
先求得∠A=∠BCD,然后根据锐角三角函数的概念求解即可.
【详解】
解:∵∠ACB=90°,AB=5,AC=4,
∴BC=3,
在Rt△ABC与Rt△BCD中,∠A+∠B=90°,∠BCD+∠B=90°.
∴∠A=∠BCD.
∴tan∠BCD=tanA==,
故选D.
【点睛】
本题考查解直角三角形,三角函数值只与角的大小有关,因而求一个角的函数值,可以转化为求与它相等的其它角的三角函数值.
12、C
【解析】
分析:细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.
详解:从左边看竖直叠放2个正方形.
故选:C.
点睛:此题考查了几何体的三种视图和学生的空间想象能力,左视图是从物体左面看所得到的图形,解答时学生易将三种视图混淆而错误的选其它选项.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、或
【解析】
分0°<x°≤90°、90°<x°≤180°两种情况,根据圆周角定理求出∠DOC,根据弧长公式计算即可.
【详解】
解:当0°<x°≤90°时,如图所示:连接OC,
由圆周角定理得,∠BOC=2∠A=2x°,
∴∠DOC=180°-2x°,
∴∠OBC所对的劣弧长=,
当90°<x°≤180°时,同理可得,∠OBC所对的劣弧长= .
故答案为:或.
【点睛】
本题考查了三角形的外接圆与外心、弧长的计算,掌握弧长公式、圆周角定理是解题的关键.
14、
【解析】
设买美酒x斗,买普通酒y斗,根据“美酒一斗的价格是50钱、买两种酒2斗共付30钱”列出方程组.
【详解】
依题意得:.
故答案为.
【点睛】
考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.
15、a(2x+y)(2x-y)
【解析】
首先提取公因式a,再利用平方差进行分解即可.
【详解】
原式=a(4x2-y2)
=a(2x+y)(2x-y),
故答案为a(2x+y)(2x-y).
【点睛】
本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
16、.
【解析】
作辅助线,构建直角△DMN,先根据菱形的性质得:∠DAC=60°,AE=AF=2,也知菱形的边长为4,利用勾股定理求MN和DN的长,从而计算DM的长.
【详解】
解:过M作MN⊥AD于N,
∵四边形ABCD是菱形,
∴
∵EF⊥AC,
∴AE=AF=2,∠AFM=30°,
∴AM=1,
Rt△AMN中,∠AMN=30°,
∴
∵AD=AB=2AE=4,
∴
由勾股定理得:
故答案为
【点睛】
本题主要考查了菱形的性质,等腰三角形的性质,勾股定理及直角三角形30度角的性质,熟练掌握直角三角形中30°所对的直角边是斜边的一半.
17、210°
【解析】
根据三角形内角和定理得到∠B=45°,∠E=60°,根据三角形的外角的性质计算即可.
【详解】
解:如图:
∵∠C=∠F=90°,∠A=45°,∠D=30°,
∴∠B=45°,∠E=60°,
∴∠2+∠3=120°,
∴∠α+∠β=∠A+∠1+∠4+∠B=∠A+∠B+∠2+∠3=90°+120°=210°,
故答案为:210°.
【点睛】
本题考查的是三角形的外角的性质、三角形内角和定理,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.
18、1
【解析】
作AB的中点E,连接EM、CE,根据直角三角形斜边上的中线等于斜边的一半以及三角形的中位线定理求得CE和EM的长,然后在△CEM中根据三边关系即可求解.
【详解】
作AB的中点E,连接EM、CE,
在直角△ABC中,AB===10,
∵E是直角△ABC斜边AB上的中点,
∴CE=AB=5,
∵M是BD的中点,E是AB的中点,
∴ME=AD=2,
∴在△CEM中,5-2≤CM≤5+2,即3≤CM≤1,
∴最大值为1,
故答案为1.
【点睛】
本题考查了点与圆的位置关系、三角形的中位线定理的知识,要结合勾股定理、直角三角形斜边上的中线等于斜边的一半解答.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)11.4;(2)19.5m.
【解析】
(1)根据直角三角形的性质和三角函数解答即可;
(2)过点D作DH⊥地面于H,利用直角三角形的性质和三角函数解答即可.
【详解】
解:(1)在Rt△ABC中,
∵∠BAC=64°,AC=5m,
∴AB=5÷0.44 11.4 (m);
故答案为:11.4;
(2)过点D作DH⊥地面于H,交水平线于点E,
在Rt△ADE中,
∵AD=20m,∠DAE=64°,EH=1.5m,
∴DE=sin64°×AD≈20×0.9≈18(m),
即DH=DE+EH=18+1.5=19.5(m),
答:如果该吊车吊臂的最大长度AD为20m,那么从地面上吊起货物的最大高度是19.5m.
【点睛】
本题考查解直角三角形、锐角三角函数等知识,解题的关键是添加辅助线,构造直角三角形.
20、(1);;(2)点P坐标为(,).
【解析】
(1)将F(4,)代入,即可求出反比例函数的解析式;再根据求出E点坐标,将E、F两点坐标代入,即可求出一次函数解析式;
(2)先求出△EBF的面积,
点P是线段EF上一点,可设点P坐标为,
根据面积公式即可求出P点坐标.
【详解】
解:(1)∵反比例函数经过点,
∴n=2,
反比例函数解析式为.
∵的图象经过点E(1,m),
∴m=2,点E坐标为(1,2).
∵直线 过点,点,
∴,解得,
∴一次函数解析式为;
(2)∵点E坐标为(1,2),点F坐标为,
∴点B坐标为(4,2),
∴BE=3,BF=,
∴,
∴ .
点P是线段EF上一点,可设点P坐标为,
∴,
解得,
∴点P坐标为.
【点睛】
本题主要考查反比例函数,一次函数的解析式以及三角形的面积公式.
21、见解析
【解析】
分析:(1)根据求出点的坐标,用待定系数法即可求出抛物线的解析式.
(2)分两种情况进行讨论即可.
(3)存在. 假设直线l上存在点M,抛物线上存在点N,使得以A、O、M、N为顶点的四边形为平行四边形.分当平行四边形是平行四边形时,当平行四边形AONM是平行四边形时,当四边形AMON为平行四边形时,三种情况进行讨论.
详解:(1)易证,得,
∴OC=2,∴C(0,2),
∵抛物线过点A(-1,0),B(4,0)
因此可设抛物线的解析式为
将C点(0,2)代入得:,即
∴抛物线的解析式为
(2)如图2,
当时,则P1(,2),
当 时,
∴OC∥l,
∴,
∴P2H=·OC=5,
∴P2 (,5)
因此P点的坐标为(,2)或(,5).
(3)存在.
假设直线l上存在点M,抛物线上存在点N,使得以A、O、M、N为顶点的四边形为平行四边形.
如图3,
当平行四边形是平行四边形时,M(,),(,),
当平行四边形AONM是平行四边形时,M(,),N(,),
如图4,当四边形AMON为平行四边形时,MN与OA互相平分,此时可设M(,m),则
∵点N在抛物线上,
∴-m=-·(-+1)( --4)=-,
∴m=,
此时M(,), N(-,-).
综上所述,M(,),N(,)或M(,),N(,) 或 M(,), N(-,-).
点睛:属于二次函数综合题,考查相似三角形的判定与性质,待定系数法求二次函数解析式等,注意分类讨论的思想方法在数学中的应用.
22、(1)反比例函数的解析式为:y=,一次函数的解析式为:y=x+1;
(2)﹣3<x<0或x>2;
(3)1.
【解析】
(1)根据点A位于反比例函数的图象上,利用待定系数法求出反比例函数解析式,将点B坐标代入反比例函数解析式,求出n的值,进而求出一次函数解析式
(2)根据点A和点B的坐标及图象特点,即可求出反比例函数值大于一次函数值时x的取值范围
(3)由点A和点B的坐标求得三角形以BC 为底的高是10,从而求得三角形ABC 的面积
【详解】
解:(1)∵点A(2,3)在y=的图象上,∴m=6,
∴反比例函数的解析式为:y=,
∴n==﹣2,
∵A(2,3),B(﹣3,﹣2)两点在y=kx+b上,
∴,
解得:,
∴一次函数的解析式为:y=x+1;
(2)由图象可知﹣3<x<0或x>2;
(3)以BC为底,则BC边上的高为3+2=1,
∴S△ABC=×2×1=1.
23、(2)-2;(2)m=﹣2;(2)(﹣2,5);(4)当a=时,△PAC的面积取最大值,最大值为
【解析】
(2)将(0,-2)代入二次函数解析式中即可求出n值;
(2)由二次函数图象与x轴只有一个交点,利用根的判别式△=0,即可得出关于m的一元二次方程,解之取其非零值即可得出结论;
(2)根据二次函数的解析式利用二次函数的性质可找出二次函数图象的对称轴,利用二次函数图象的对称性即可找出另一个交点的坐标;
(4)将点A的坐标代入二次函数解析式中可求出m值,由此可得出二次函数解析式,由点A、C的坐标,利用待定系数法可求出直线AC的解析式,过点P作PD⊥x轴于点D,交AC于点Q,设点P的坐标为(a,a2-2a-2),则点Q的坐标为(a,a-2),点D的坐标为(a,0),根据三角形的面积公式可找出S△ACP关于a的函数关系式,配方后即可得出△PAC面积的最大值.
【详解】
解:(2)∵二次函数y=mx2﹣2mx+n的图象经过(0,﹣2),
∴n=﹣2.
故答案为﹣2.
(2)∵二次函数y=mx2﹣2mx﹣2的图象与x轴有且只有一个交点,
∴△=(﹣2m)2﹣4×(﹣2)m=4m2+22m=0,
解得:m2=0,m2=﹣2.
∵m≠0,
∴m=﹣2.
(2)∵二次函数解析式为y=mx2﹣2mx﹣2,
∴二次函数图象的对称轴为直线x=﹣=2.
∵该二次函数图象与平行于x轴的直线y=5的一个交点的横坐标为4,
∴另一交点的横坐标为2×2﹣4=﹣2,
∴另一个交点的坐标为(﹣2,5).
故答案为(﹣2,5).
(4)∵二次函数y=mx2﹣2mx﹣2的图象经过点A(2,0),
∴0=9m﹣6m﹣2,
∴m=2,
∴二次函数解析式为y=x2﹣2x﹣2.
设直线AC的解析式为y=kx+b(k≠0),
将A(2,0)、C(0,﹣2)代入y=kx+b,得:
,解得:,
∴直线AC的解析式为y=x﹣2.
过点P作PD⊥x轴于点D,交AC于点Q,如图所示.
设点P的坐标为(a,a2﹣2a﹣2),则点Q的坐标为(a,a﹣2),点D的坐标为(a,0),
∴PQ=a﹣2﹣(a2﹣2a﹣2)=2a﹣a2,
∴S△ACP=S△APQ+S△CPQ=PQ•OD+PQ•AD=﹣a2+a=﹣(a﹣)2+,
∴当a=时,△PAC的面积取最大值,最大值为 .
【点睛】
本题考查了待定系数法求一次(二次)函数解析式、抛物线与x轴的交点、二次函数的性质以及二次函数的最值,解题的关键是:(2)代入点的坐标求出n值;(2)牢记当△=b2-4ac=0时抛物线与x轴只有一个交点;(2)利用二次函数的对称轴求出另一交点的坐标;(4)利用三角形的面积公式找出S△ACP关于a的函数关系式.
24、(1)y=﹣x2+x+2;(2)y=2x+2;(3)①线段BP与线段AE的关系是相互垂直;②点P的坐标为:(﹣4+2,﹣8+4)或(﹣4﹣2,﹣8﹣4)或(0,﹣4)或(﹣,﹣4).
【解析】
(1)将A(5,0)和点B(﹣3,﹣4)代入y=ax2+bx+2,即可求解;
(2)C点坐标为(0,2),把点B、C的坐标代入直线方程y=kx+b即可求解;
(3)①AE直线的斜率kAE=2,而直线BC斜率的kAE=2即可求解;
②考虑当P点在线段BC上时和在线段BE上时两种情况,利用PM′=PM即可求解.
【详解】
(1)将A(5,0)和点B(﹣3,﹣4)代入y=ax2+bx+2,
解得:a=﹣,b=,
故函数的表达式为y=﹣x2+x+2;
(2)C点坐标为(0,2),把点B、C的坐标代入直线方程y=kx+b,
解得:k=2,b=2,
故:直线BC的函数表达式为y=2x+2,
(3)①E是点B关于y轴的对称点,E坐标为(3,﹣4),
则AE直线的斜率kAE=2,而直线BC斜率的kAE=2,
∴AE∥BC,而EP⊥BC,∴BP⊥AE
而BP=AE,∴线段BP与线段AE的关系是相互垂直;
②设点P的横坐标为m,
当P点在线段BC上时,
P坐标为(m,2m+2),M坐标为(m,2),则PM=2m,
直线MM′⊥BC,∴kMM′=﹣,
直线MM′的方程为:y=﹣x+(2+m),
则M′坐标为(0,2+m)或(4+m,0),
由题意得:PM′=PM=2m,
PM′2=42+m2=(2m)2,此式不成立,
或PM′2=m2+(2m+2)2=(2m)2,
解得:m=﹣4±2,
故点P的坐标为(﹣4±2,﹣8±4);
当P点在线段BE上时,
点P坐标为(m,﹣4),点M坐标为(m,2),
则PM=6,
直线MM′的方程不变,为y=﹣x+(2+m),
则M′坐标为(0,2+m)或(4+m,0),
PM′2=m2+(6+m)2=(2m)2,
解得:m=0,或﹣;
或PM′2=42+42=(6)2,无解;
故点P的坐标为(0,﹣4)或(﹣,﹣4);
综上所述:
点P的坐标为:(﹣4+2,﹣8+4)或(﹣4﹣2,﹣8﹣4)或(0,﹣4)或(﹣,﹣4).
【点睛】
主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.
25、(1)见解析;(2)EF=.
【解析】
(1)由旋转的性质可求∠FAE=∠DAE=45°,即可证△AEF≌△AED,可得EF=ED;
(2)由旋转的性质可证∠FBE=90°,利用勾股定理和方程的思想可求EF的长.
【详解】
(1)∵∠BAC=90°,∠EAD=45°,
∴∠BAE+∠DAC=45°,
∵将△ADC绕点A顺时针旋转90°,得到△AFB,
∴∠BAF=∠DAC,AF=AD,CD=BF,∠ABF=∠ACD=45°,
∴∠BAF+∠BAE=45°=∠FAE,
∴∠FAE=∠DAE,AD=AF,AE=AE,
∴△AEF≌△AED(SAS),
∴DE=EF
(2)∵AB=AC=2,∠BAC=90°,
∴BC=4,
∵CD=1,
∴BF=1,BD=3,即BE+DE=3,
∵∠ABF=∠ABC=45°,
∴∠EBF=90°,
∴BF2+BE2=EF2,
∴1+(3﹣EF)2=EF2,
∴EF=
【点睛】
本题考查了旋转的性质,等腰直角三角形的性质,全等三角形的判定和性质,勾股定理等知识,利用方程的思想解决问题是本题的关键.
26、﹣2,﹣1,0
【解析】
分析:先解不等式①,去括号,移项,系数化为1,再解不等式②,取分母,移项,然后找出不等式组的解集.
本题解析:
,
解不等式①得,x≥−2,
解不等式②得,x
相关试卷
这是一份[数学][二模]江苏省镇江市丹徒区2024年中考二模试题(解析版),共21页。试卷主要包含了填空题,选择题,羊二,直金十两.牛二,解答题等内容,欢迎下载使用。
这是一份2024年江苏省镇江市丹徒区中考二模数学试题,共8页。试卷主要包含了答卷前,考生务必用0,分解因式,点 A 、B 在反比例函数等内容,欢迎下载使用。
这是一份2024年江苏省镇江市丹徒区中考二模数学试题,共6页。