![江苏省镇江市名校2022年中考数学考前最后一卷含解析01](http://img-preview.51jiaoxi.com/2/3/13558874/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![江苏省镇江市名校2022年中考数学考前最后一卷含解析02](http://img-preview.51jiaoxi.com/2/3/13558874/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![江苏省镇江市名校2022年中考数学考前最后一卷含解析03](http://img-preview.51jiaoxi.com/2/3/13558874/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
江苏省镇江市名校2022年中考数学考前最后一卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图,在△ABC中,∠C=90°,M是AB的中点,动点P从点A出发,
沿AC方向匀速运动到终点C,动点Q从点C出发,沿CB方向匀速运动到终点B.已知P,Q两点同时出发,并同时到达终点.连结MP,MQ,PQ.在整个运动过程中,△MPQ的面积大小变化情况是( )
A.一直增大 B.一直减小 C.先减小后增大 D.先增大后减小
2.2017年,太原市GDP突破三千亿元大关,达到3382亿元,经济总量比上年增长了426.58亿元,达到近三年来增量的最高水平,数据“3382亿元”用科学记数法表示为( )
A.3382×108元 B.3.382×108元 C.338.2×109元 D.3.382×1011元
3.若一元二次方程x2﹣2x+m=0有两个不相同的实数根,则实数m的取值范围是( )
A.m≥1 B.m≤1 C.m>1 D.m<1
4.下列图形中,是中心对称但不是轴对称图形的为( )
A. B.
C. D.
5.关于的方程有实数根,则满足( )
A. B.且 C.且 D.
6.二次函数的图象如图所示,则一次函数与反比例函数在同一坐标系内的图象大致为( )
A. B. C. D.
7.定义:一个自然数,右边的数字总比左边的数字小,我们称之为“下滑数”(如:32,641,8531等).现从两位数中任取一个,恰好是“下滑数”的概率为( )
A. B. C. D.
8.如图所示的几何体的俯视图是( )
A. B. C. D.
9.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )
A. B. C. D.
10.下列运算正确的是( )
A.5ab﹣ab=4 B.a6÷a2=a4 C. D.(a2b)3=a5b3
二、填空题(共7小题,每小题3分,满分21分)
11.使得分式值为零的x的值是_________;
12.函数y=中自变量x的取值范围是_____.
13.菱形的两条对角线长分别是方程的两实根,则菱形的面积为______.
14.化简:=_____.
15.今年,某县境内跨湖高速进入施工高峰期,交警队为提醒出行车辆,在一些主要路口设立了交通路况警示牌(如图).已知立杆AD高度是4m,从侧面C点测得警示牌顶端点A和底端B点的仰角(∠ACD和∠BCD)分别是60°,45°.那么路况警示牌AB的高度为_____.
16.计算:(a2)2=_____.
17.如图,数轴上点A表示的数为a,化简:a_____.
三、解答题(共7小题,满分69分)
18.(10分)如图,点A,C,B,D在同一条直线上,BE∥DF,∠A=∠F,AB=FD,求证:AE=FC.
19.(5分)(1)计算:;
(2)化简:.
20.(8分)如图,四边形ABCD中,AC平分∠DAB,AC2=AB•AD,∠ADC=90°,E为AB的中点.
(1)求证:△ADC∽△ACB;
(2)CE与AD有怎样的位置关系?试说明理由;
(3)若AD=4,AB=6,求的值.
21.(10分)某学校为弘扬中国传统诗词文化,在九年级随机抽查了若干名学生进行测试,然后把测试结果分为4个等级;A、B、C、D,对应的成绩分别是9分、8分、7分、6分,并将统计结果绘制成两幅如图所示的统计图.请结合图中的信息解答下列问题:
(1)本次抽查测试的学生人数为 ,图①中的a的值为 ;
(2)求统计所抽查测试学生成绩数据的平均数、众数和中位数.
22.(10分)先化简,再求值:÷(﹣x+1),其中x=sin30°+2﹣1+.
23.(12分)如图,将矩形OABC放在平面直角坐标系中,O为原点,点A在x轴的正半轴上,B(8,6),点D是射线AO上的一点,把△BAD沿直线BD折叠,点A的对应点为A′.
(1)若点A′落在矩形的对角线OB上时,OA′的长= ;
(2)若点A′落在边AB的垂直平分线上时,求点D的坐标;
(3)若点A′落在边AO的垂直平分线上时,求点D的坐标(直接写出结果即可).
24.(14分)(1)(问题发现)小明遇到这样一个问题:
如图1,△ABC是等边三角形,点D为BC的中点,且满足∠ADE=60°,DE交等边三角形外角平分线CE所在直线于点E,试探究AD与DE的数量关系.
(1)小明发现,过点D作DF//AC,交AC于点F,通过构造全等三角形,经过推理论证,能够使问题得到解决,请直接写出AD与DE的数量关系: ;
(2)(类比探究)如图2,当点D是线段BC上(除B,C外)任意一点时(其它条件
不变),试猜想AD与DE之间的数量关系,并证明你的结论.
(3)(拓展应用)当点D在线段BC的延长线上,且满足CD=BC(其它条件不变)时,
请直接写出△ABC与△ADE的面积之比.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
如图所示,连接CM,
∵M是AB的中点,
∴S△ACM=S△BCM=S△ABC,
开始时,S△MPQ=S△ACM=S△ABC;
由于P,Q两点同时出发,并同时到达终点,从而点P到达AC的中点时,点Q也到达BC的中点,此时,S△MPQ=S△ABC;
结束时,S△MPQ=S△BCM=S△ABC.
△MPQ的面积大小变化情况是:先减小后增大.故选C.
2、D
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
3382亿=338200000000=3.382×1.
故选:D.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
3、D
【解析】
分析:根据方程的系数结合根的判别式△>0,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围.
详解:∵方程有两个不相同的实数根,
∴
解得:m<1.
故选D.
点睛:本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.
4、C
【解析】
试题分析:根据轴对称图形及中心对称图形的定义,结合所给图形进行判断即可.A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、是轴对称图形,也是中心对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误.
故选C.
考点:中心对称图形;轴对称图形.
5、A
【解析】
分类讨论:当a=5时,原方程变形一元一次方程,有一个实数解;当a≠5时,根据判别式的意义得到a≥1且a≠5时,方程有两个实数根,然后综合两种情况即可得到满足条件的a的范围.
【详解】
当a=5时,原方程变形为-4x-1=0,解得x=-;
当a≠5时,△=(-4)2-4(a-5)×(-1)≥0,解得a≥1,即a≥1且a≠5时,方程有两个实数根,
所以a的取值范围为a≥1.
故选A.
【点睛】
本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.
6、D
【解析】
根据二次函数图象开口向上得到a>0,再根据对称轴确定出b,根据二次函数图形与轴的交点个数,判断的符号,根据图象发现当x=1时y=a+b+c<0,然后确定出一次函数图象与反比例函数图象的情况,即可得解.
【详解】
∵二次函数图象开口方向向上,
∴a>0,
∵对称轴为直线
∴b<0,
二次函数图形与轴有两个交点,则>0,
∵当x=1时y=a+b+c<0,
∴的图象经过第二四象限,且与y轴的正半轴相交,
反比例函数图象在第二、四象限,
只有D选项图象符合.
故选:D.
【点睛】
考查反比例函数的图象,一次函数的图象,二次函数的图象,掌握函数图象与系数的关系是解题的关键.
7、A
【解析】
分析:根据概率的求法,找准两点:①全部情况的总数:根据题意得知这样的两位数共有90个;
②符合条件的情况数目:从总数中找出符合条件的数共有45个;二者的比值就是其发生的概率.
详解:两位数共有90个,下滑数有10、21、20、32、31、30、43、42、41、40、54、53、52、51、50、65、64、63、62、61、60、76、75、74、73、72、71、70、87、86、85、84、83、82、81、80、98、97、96、95、94、93、92、91、90共有45个,
概率为.
故选A.
点睛:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
8、D
【解析】
找到从上面看所得到的图形即可,注意所有看到的棱都应表现在俯视图中.
【详解】
从上往下看,该几何体的俯视图与选项D所示视图一致.
故选D.
【点睛】
本题考查了简单组合体三视图的知识,俯视图是从物体的上面看得到的视图.
9、A
【解析】
根据轴对称图形的概念判断即可.
【详解】
A、是轴对称图形;
B、不是轴对称图形;
C、不是轴对称图形;
D、不是轴对称图形.
故选:A.
【点睛】
本题考查的是轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
10、B
【解析】
根据同底数幂的除法,合并同类项,积的乘方的运算法则进行逐一运算即可.
【详解】
解:A、5ab﹣=4ab,此选项运算错误,
B、a6÷a2=a4,此选项运算正确,
C、,选项运算错误,
D、(a2b)3=a6b3,此选项运算错误,
故选B.
【点睛】
此题考查了同底数幂的除法,合并同类项,积的乘方,熟练掌握运算法则是解本题的关键.
二、填空题(共7小题,每小题3分,满分21分)
11、2
【解析】
根据分式的性质,要使分式有意义,则必须分母不能为0,要使分式为零,则只有分子为0,因此计算即可.
【详解】
解:要使分式有意义则 ,即
要使分式为零,则 ,即
综上可得
故答案为2
【点睛】
本题主要考查分式的性质,关键在于分式的分母不能为0.
12、x≥﹣且x≠1.
【解析】
根据分式有意义的条件、二次根式有意义的条件列式计算.
【详解】
由题意得,2x+3≥0,x-1≠0,
解得,x≥-且x≠1,
故答案为:x≥-且x≠1.
【点睛】
本题考查的是函数自变量的取值范围,①当表达式的分母不含有自变量时,自变量取全体实数.②当表达式的分母中含有自变量时,自变量取值要使分母不为零.③当函数的表达式是偶次根式时,自变量的取值范围必须使被开方数不小于零.
13、2
【解析】
解:x2﹣14x+41=0,则有(x-6)(x-1)=0解得:x=6或x=1.所以菱形的面积为:(6×1)÷2=2.菱形的面积为:2.故答案为2.
点睛:本题考查菱形的性质.菱形的对角线互相垂直,以及对角线互相垂直的四边形的面积的特点和根与系数的关系.
14、
【解析】
先算除法,再算减法,注意把分式的分子分母分解因式
【详解】
原式=
=
=
【点睛】
此题考查分式的混合运算,掌握运算法则是解题关键
15、m
【解析】
由特殊角的正切值即可得出线段CD的长度,在Rt△BDC中,由∠BCD=45°,得出CD=BD,求出BD长度,再利用线段间的关系即可得出结论.
【详解】
在Rt△ADC中,∠ACD=60°,AD=4
∴tan60°==
∴CD=
∵在Rt△BCD中,∠BAD=45∘,CD=
∴BD=CD=.
∴AB=AD-BD=4-=
路况警示牌AB的高度为m.
故答案为:m.
【点睛】
解直角三角形的应用-仰角俯角问题.
16、a1.
【解析】
根据幂的乘方法则进行计算即可.
【详解】
故答案为
【点睛】
考查幂的乘方,掌握运算法则是解题的关键.
17、1.
【解析】
直接利用二次根式的性质以及结合数轴得出a的取值范围进而化简即可.
【详解】
由数轴可得:0<a<1,
则a+=a+=a+(1﹣a)=1.
故答案为1.
【点睛】
本题主要考查了二次根式的性质与化简,正确得出a的取值范围是解题的关键.
三、解答题(共7小题,满分69分)
18、证明见解析.
【解析】
由已知条件BE∥DF,可得出∠ABE=∠D,再利用ASA证明△ABE≌△FDC即可.
证明:∵BE∥DF,∴∠ABE=∠D,
在△ABE和△FDC中,
∠ABE=∠D,AB=FD,∠A=∠F
∴△ABE≌△FDC(ASA),
∴AE=FC.
“点睛”此题主要考查全等三角形的判定与性质和平行线的性质等知识点的理解和掌握,此题的关键是利用平行线的性质求证△ABC和△FDC全等.
19、(1)4+;(2).
【解析】
(1)根据幂的乘方、零指数幂、特殊角的三角函数值和绝对值可以解答本题;
(3)根据分式的减法和除法可以解答本题.
【详解】
(1)
=4+1+|1﹣2×|
=4+1+|1﹣|
=4+1+﹣1
=4+;
(2)
=
=
=.
【点睛】
本题考查分式的混合运算、实数的运算、零指数幂、特殊角的三角函数值和绝对值,解答本题的关键是明确它们各自的计算方法.
20、(1)证明见解析;(2)CE∥AD,理由见解析;(3).
【解析】
(1)根据角平分线的定义得到∠DAC=∠CAB,根据相似三角形的判定定理证明;
(2)根据相似三角形的性质得到∠ACB=∠ADC=90°,根据直角三角形的性质得到CE=AE,根据等腰三角形的性质、平行线的判定定理证明;
(3)根据相似三角形的性质列出比例式,计算即可.
【详解】
解:(1)∵AC平分∠DAB,
∴∠DAC=∠CAB,
又∵AC2=AB•AD,
∴AD:AC=AC:AB,
∴△ADC∽△ACB;
(2)CE∥AD,
理由:∵△ADC∽△ACB,
∴∠ACB=∠ADC=90°,
又∵E为AB的中点,
∴∠EAC=∠ECA,
∵∠DAC=∠CAE,
∴∠DAC=∠ECA,
∴CE∥AD;
(3)∵AD=4,AB=6,CE=AB=AE=3,
∵CE∥AD,
∴∠FCE=∠DAC,∠CEF=∠ADF,
∴△CEF∽△ADF,
∴==,
∴=.
21、(1)50、2;(2)平均数是7.11;众数是1;中位数是1.
【解析】
(1)根据A等级人数及其百分比可得总人数,用C等级人数除以总人数可得a的值;
(2)根据平均数、众数、中位数的定义计算可得.
【详解】
(1)本次抽查测试的学生人数为14÷21%=50人,a%=×100%=2%,即a=2.
故答案为50、2;
(2)观察条形统计图,平均数为=7.11.
∵在这组数据中,1出现了20次,出现的次数最多,∴这组数据的众数是1.
∵将这组数据从小到大的顺序排列,其中处于中间的两个数都是1,∴=1,∴这组数据的中位数是1.
【点睛】
本题考查了众数、平均数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.
22、-5
【解析】
根据分式的运算法则以及实数的运算法则即可求出答案.
【详解】
当x=sin30°+2﹣1+时,
∴x=++2=3,
原式=÷==﹣5.
【点睛】
本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.
23、(1)1;(2)点D(8﹣2,0);(3)点D的坐标为(3﹣1,0)或(﹣3﹣1,0).
【解析】
分析:(Ⅰ)由点B的坐标知OA=8、AB=1、OB=10,根据折叠性质可得BA=BA′=1,据此可得答案;
(Ⅱ)连接AA′,利用折叠的性质和中垂线的性质证△BAA′是等边三角形,可得∠A′BD=∠ABD=30°,据此知AD=ABtan∠ABD=2,继而可得答案;
(Ⅲ)分点D在OA上和点D在AO延长线上这两种情况,利用相似三角形的判定和性质分别求解可得.
详解:(Ⅰ)如图1,由题意知OA=8、AB=1,∴OB=10,由折叠知,BA=BA′=1,∴OA′=1.
故答案为1;
(Ⅱ)如图2,连接AA′.
∵点A′落在线段AB的中垂线上,∴BA=AA′.
∵△BDA′是由△BDA折叠得到的,
∴△BDA′≌△BDA,∴∠A′BD=∠ABD,A′B=AB,
∴AB=A′B=AA′,∴△BAA′是等边三角形,
∴∠A′BA=10°,∴∠A′BD=∠ABD=30°,
∴AD=ABtan∠ABD=1tan30°=2,
∴OD=OA﹣AD=8﹣2,
∴点D(8﹣2,0);
(Ⅲ)①如图3,当点D在OA上时.
由旋转知△BDA′≌△BDA,∴BA=BA′=1,∠BAD=∠BA′D=90°.
∵点A′在线段OA的中垂线上,∴BM=AN=OA=4,∴A′M===2,
∴A′N=MN﹣A′M=AB﹣A′M=1﹣2,
由∠BMA′=∠A′ND=∠BA′D=90°知△BMA′∽△A′ND,
则=,即=,
解得:DN=3﹣5,
则OD=ON+DN=4+3﹣5=3﹣1,
∴D(3﹣1,0);
②如图4,当点D在AO延长线上时,过点A′作x轴的平行线交y轴于点M,延长AB交所作直线于点N, 则BN=CM,MN=BC=OA=8,由旋转知△BDA′≌△BDA,∴BA=BA′=1,∠BAD=∠BA′D=90°.
∵点A′在线段OA的中垂线上,∴A′M=A′N=MN=4,
则MC=BN==2,∴MO=MC+OC=2+1,
由∠EMA′=∠A′NB=∠BA′D=90°知△EMA′∽△A′NB,
则=,即=,
解得:ME=,则OE=MO﹣ME=1+.
∵∠DOE=∠A′ME=90°、∠OED=∠MEA′,
∴△DOE∽△A′ME,
∴=,即=,
解得:DO=3+1,则点D的坐标为(﹣3﹣1,0).
综上,点D的坐标为(3﹣1,0)或(﹣3﹣1,0).
点睛:本题主要考查四边形的综合问题,解题的关键是熟练掌握折叠变换的性质、矩形的性质、相似三角形的判定与性质及勾股定理等知识点.
24、(1)AD=DE;(2)AD=DE,证明见解析;(3).
【解析】
试题分析:本题难度中等.主要考查学生对探究例子中的信息进行归纳总结.并能够结合三角形的性质是解题关键.
试题解析:(10分)
(1)AD=DE.
(2)AD=DE.
证明:如图2,过点D作DF//AC,交AC于点F,
∵△ABC是等边三角形,
∴AB=BC,∠B=∠ACB=∠ABC=60°.
又∵DF//AC,
∴∠BDF=∠BFD=60°
∴△BDF是等边三角形,BF=BD,∠BFD=60°,
∴AF=CD,∠AFD=120°.
∵EC是外角的平分线,
∠DCE=120°=∠AFD.
∵∠ADC是△ABD的外角,
∴∠ADC=∠B+∠FAD=60°+∠FAD.
∵∠ADC=∠ADE+∠EDC=60°+∠EDC,
∴∠FAD=∠EDC.
∴△AFD≌△DCE(ASA),
∴AD=DE;
(3).
考点:1.等边三角形探究题;2.全等三角形的判定与性质;3.等边三角形的判定与性质.
江苏省镇江市新区重点中学2022年中考数学考前最后一卷含解析: 这是一份江苏省镇江市新区重点中学2022年中考数学考前最后一卷含解析,共21页。试卷主要包含了考生要认真填写考场号和座位序号,下面四个几何体等内容,欢迎下载使用。
2022届江苏省镇江市丹阳市市级名校中考考前最后一卷数学试卷含解析: 这是一份2022届江苏省镇江市丹阳市市级名校中考考前最后一卷数学试卷含解析,共17页。
2022届江苏省兴化市市级名校中考数学考前最后一卷含解析: 这是一份2022届江苏省兴化市市级名校中考数学考前最后一卷含解析,共23页。试卷主要包含了股市有风险,投资需谨慎,某排球队名场上队员的身高等内容,欢迎下载使用。