|试卷下载
搜索
    上传资料 赚现金
    江苏省镇江市五校2021-2022学年中考数学最后冲刺模拟试卷含解析
    立即下载
    加入资料篮
    江苏省镇江市五校2021-2022学年中考数学最后冲刺模拟试卷含解析01
    江苏省镇江市五校2021-2022学年中考数学最后冲刺模拟试卷含解析02
    江苏省镇江市五校2021-2022学年中考数学最后冲刺模拟试卷含解析03
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省镇江市五校2021-2022学年中考数学最后冲刺模拟试卷含解析

    展开
    这是一份江苏省镇江市五校2021-2022学年中考数学最后冲刺模拟试卷含解析,共18页。试卷主要包含了四组数中,下列运算,结果正确的是,实数4的倒数是,若关于x的一元二次方程等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图是本地区一种产品30天的销售图象,图①是产品日销售量y(单位:件)与时间t(单位;天)的函数关系,图②是一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润,下列结论错误的是(  )

    A.第24天的销售量为200件 B.第10天销售一件产品的利润是15元
    C.第12天与第30天这两天的日销售利润相等 D.第27天的日销售利润是875元
    2.今年春节某一天早7:00,室内温度是6℃,室外温度是-2℃,则室内温度比室外温度高( )
    A.-4℃ B.4℃ C.8℃ D.-8℃
    3.若关于x的不等式组无解,则m的取值范围(  )
    A.m>3 B.m<3 C.m≤3 D.m≥3
    4.四组数中:①1和1;②﹣1和1;③0和0;④﹣和﹣1,互为倒数的是(  )
    A.①② B.①③ C.①④ D.①③④
    5.下列运算,结果正确的是(  )
    A.m2+m2=m4 B.2m2n÷mn=4m
    C.(3mn2)2=6m2n4 D.(m+2)2=m2+4
    6.如图,在△ABC中,点D在BC上,DE∥AC,DF∥AB,下列四个判断中不正确的是( )

    A.四边形AEDF是平行四边形
    B.若∠BAC=90°,则四边形AEDF是矩形
    C.若AD平分∠BAC,则四边形AEDF是矩形
    D.若AD⊥BC且AB=AC,则四边形AEDF是菱形
    7.如图,一次函数和反比例函数的图象相交于,两点,则使成立的取值范围是(  )

    A.或 B.或
    C.或 D.或
    8.实数4的倒数是(  )
    A.4 B. C.﹣4 D.﹣
    9.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是(  )
    A.k> B.k≥ C.k>且k≠1 D.k≥且k≠1
    10.如果零上2℃记作+2℃,那么零下3℃记作( )
    A.-3℃ B.-2℃ C.+3℃ D.+2℃
    二、填空题(共7小题,每小题3分,满分21分)
    11.计算:_______________.
    12.飞机着陆后滑行的距离y(单位:m)关于滑行时间t(单位:s)的函数解析式是y=60t﹣.在飞机着陆滑行中,最后4s滑行的距离是_____m.
    13.若方程x2﹣4x+1=0的两根是x1,x2,则x1(1+x2)+x2的值为_____.
    14.满足的整数x的值是_____.
    15.如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数y=的图象上,若点A的坐标为(﹣2,﹣2),则k的值为_____.

    16.如图,点A,B在反比例函数(k>0)的图象上,AC⊥x轴,BD⊥x轴,垂足C,D分别在x轴的正、负半轴上,CD=k,已知AB=2AC,E是AB的中点,且△BCE的面积是△ADE的面积的2倍,则k的值是______.

    17.如果关于x的方程的两个实数根分别为x1,x2,那么的值为________________.
    三、解答题(共7小题,满分69分)
    18.(10分)抛物线y=x2+bx+c经过点A、B、C,已知A(﹣1,0),C(0,﹣3).
    求抛物线的解析式;如图1,抛物线顶点为E,EF⊥x轴于F点,M(m,0)是x轴上一动点,N是线段EF上一点,若∠MNC=90°,请指出实数m的变化范围,并说明理由.如图2,将抛物线平移,使其顶点E与原点O重合,直线y=kx+2(k>0)与抛物线相交于点P、Q(点P在左边),过点P作x轴平行线交抛物线于点H,当k发生改变时,请说明直线QH过定点,并求定点坐标.
    19.(5分)随着移动计算技术和无线网络的快速发展,移动学习方式越来越引起人们的关注,某校计划将这种学习方式应用到教育学中,从全校1500名学生中随机抽取了部分学生,对其家庭中拥有的移动设备的情况进行调查,并绘制出如下的统计图①和图②,根据相关信息,解答下列问题:本次接受随机抽样调查的学生人数为   ,图①中m的值为   ;求本次调查获取的样本数据的众数、中位数和平均数;根据样本数据,估计该校1500名学生家庭中拥有3台移动设备的学生人数.

    20.(8分)化简:(x-1- )÷.
    21.(10分)下表给出A、B、C三种上宽带网的收费方式:
     收费方式
     月使用费/元
    包时上网时间/h 
     超时费/(元/min)
     A
     30
     25
     0.05
     B
     50
     50
     0.05
     C
     120
     不限时

    设上网时间为t小时.
    (I)根据题意,填写下表:

    月费/元
    上网时间/h
    超时费/(元)
    总费用/(元)
    方式A
    30
    40


    方式B
    50
    100


    (II)设选择方式A方案的费用为y1元,选择方式B方案的费用为y2元,分别写出y1、y2与t的数量关系式;
    (III)当75<t<100时,你认为选用A、B、C哪种计费方式省钱(直接写出结果即可)?
    22.(10分)某保健品厂每天生产A,B两种品牌的保健品共600瓶,A,B两种产品每瓶的成本和利润如表,设每天生产A产品x瓶,生产这两种产品每天共获利y元.
    (1)请求出y关于x的函数关系式;
    (2)如果该厂每天至少投入成本26 400元,那么每天至少获利多少元?
    (3)该厂每天生产的A,B两种产品被某经销商全部订购,厂家对A产品进行让利,每瓶利润降低元,厂家如何生产可使每天获利最大?最大利润是多少?

    A
    B
    成本(元/瓶)
    50
    35
    利润(元/瓶)
    20
    15

    23.(12分)(1)计算:(﹣2)2﹣+(+1)2﹣4cos60°;
    (2)化简:÷(1﹣)
    24.(14分) 截至2018年5月4日,中欧班列(郑州)去回程开行共计1191班,我省与欧洲各国经贸往来日益频繁,某欧洲客商准备在河南采购一批特色商品,经调查,用1600元采购A型商品的件数是用1000元采购B型商品的件数的2倍,一件A型商品的进价比一件B型商品的进价少20元,已知A型商品的售价为160元,B型商品的售价为240元,已知该客商购进甲乙两种商品共200件,设其中甲种商品购进x件,该客商售完这200件商品的总利润为y元
    (1)求A、B型商品的进价;
    (2)该客商计划最多投入18000元用于购买这两种商品,则至少要购进多少件甲商品?若售完这些商品,则商场可获得的最大利润是多少元?
    (3)在(2)的基础上,实际进货时,生产厂家对甲种商品的出厂价下调a元(50<a<70)出售,且限定商场最多购进120件,若客商保持同种商品的售价不变,请你根据以上信息及(2)中的条件,设计出使该客商获得最大利润的进货方案.



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、C
    【解析】
    试题解析:A、根据图①可得第24天的销售量为200件,故正确;
    B、设当0≤t≤20,一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系为z=kx+b,
    把(0,25),(20,5)代入得:,
    解得:,
    ∴z=-x+25,
    当x=10时,y=-10+25=15,
    故正确;
    C、当0≤t≤24时,设产品日销售量y(单位:件)与时间t(单位;天)的函数关系为y=k1t+b1,
    把(0,100),(24,200)代入得:,
    解得:,
    ∴y=t+100,
    当t=12时,y=150,z=-12+25=13,
    ∴第12天的日销售利润为;150×13=1950(元),第30天的日销售利润为;150×5=750(元),
    750≠1950,故C错误;
    D、第30天的日销售利润为;150×5=750(元),故正确.
    故选C
    2、C
    【解析】
    根据题意列出算式,计算即可求出值.
    【详解】
    解:根据题意得:6-(-2)=6+2=8,
    则室内温度比室外温度高8℃,
    故选:C.
    【点睛】
    本题考查了有理数的减法,熟练掌握运算法则是解题的关键.
    3、C
    【解析】
    根据“大大小小找不着”可得不等式2+m≥2m-1,即可得出m的取值范围.
    【详解】

    由①得:x>2+m,
    由②得:x<2m﹣1,
    ∵不等式组无解,
    ∴2+m≥2m﹣1,
    ∴m≤3,
    故选C.
    【点睛】
    考查了解不等式组,根据求不等式的无解,遵循“大大小小解不了”原则得出是解题关键.
    4、C
    【解析】
    根据倒数的定义,分别进行判断即可得出答案.
    【详解】
    ∵①1和1;1×1=1,故此选项正确;
    ②-1和1;-1×1=-1,故此选项错误;
    ③0和0;0×0=0,故此选项错误;
    ④−和−1,-×(-1)=1,故此选项正确;
    ∴互为倒数的是:①④,
    故选C.
    【点睛】
    此题主要考查了倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.
    5、B
    【解析】
    直接利用积的乘方运算法则、合并同类项法则和单项式除以单项式运算法则计算得出答案.
    【详解】
    A. m2+m2=2m2,故此选项错误;
    B. 2m2n÷mn=4m,正确;
    C. (3mn2)2=9m2n4,故此选项错误;
    D. (m+2)2=m2+4m+4,故此选项错误.
    故答案选:B.
    【点睛】
    本题考查了乘方运算法则、合并同类项法则和单项式除以单项式运算法则,解题的关键是熟练的掌握乘方运算法则、合并同类项法则和单项式除以单项式运算法则.
    6、C
    【解析】
    A选项,∵在△ABC中,点D在BC上,DE∥AC,DF∥AB,
    ∴DE∥AF,DF∥AE,
    ∴四边形AEDF是平行四边形;即A正确;
    B选项,∵四边形AEDF是平行四边形,∠BAC=90°,
    ∴四边形AEDF是矩形;即B正确;
    C选项,因为添加条件“AD平分∠BAC”结合四边形AEDF是平行四边形只能证明四边形AEDF是菱形,而不能证明四边形AEDF是矩形;所以C错误;
    D选项,因为由添加的条件“AB=AC,AD⊥BC”可证明AD平分∠BAC,从而可通过证∠EAD=∠CAD=∠EDA证得AE=DE,结合四边形AEDF是平行四边形即可得到四边形AEDF是菱形,所以D正确.
    故选C.
    7、B
    【解析】
    根据图象找出一次函数图象在反比例函数图象上方时对应的自变量的取值范围即可.
    【详解】
    观察函数图象可发现:或时,一次函数图象在反比例函数图象上方,
    ∴使成立的取值范围是或,
    故选B.
    【点睛】
    本题考查了反比例函数与一次函数综合,函数与不等式,利用数形结合思想是解题的关键.
    8、B
    【解析】
    根据互为倒数的两个数的乘积是1,求出实数4的倒数是多少即可.
    【详解】
    解:实数4的倒数是:
    1÷4=.
    故选:B.
    【点睛】
    此题主要考查了一个数的倒数的求法,要熟练掌握,解答此题的关键是要明确:互为倒数的两个数的乘积是1.
    9、C
    【解析】
    根据题意得k-1≠0且△=2²-4(k-1)×(-2)>0,解得:k>且k≠1.
    故选C
    【点睛】
    本题考查了一元二次方程ax²+bx+c=0(a≠0)的根的判别式△=b²-4ac,关键是熟练掌握:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.
    10、A
    【解析】
    一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.
    【详解】
    ∵“正”和“负”相对,∴如果零上2℃记作+2℃,那么零下3℃记作-3℃.
    故选A.

    二、填空题(共7小题,每小题3分,满分21分)
    11、
    【解析】
    先把化简为2,再合并同类二次根式即可得解.
    【详解】
    2-=.
    故答案为.
    【点睛】
    本题考查了二次根式的运算,正确对二次根式进行化简是关键.
    12、24
    【解析】
    先利用二次函数的性质求出飞机滑行20s停止,此时滑行距离为600m,然后再将t=20-4=16代入求得16s时滑行的距离,即可求出最后4s滑行的距离.
    【详解】
    y=60t﹣=(t-20)2+600,即飞机着陆后滑行20s时停止,滑行距离为600m,
    当t=20-4=16时,y=576,
    600-576=24,
    即最后4s滑行的距离是24m,
    故答案为24.
    【点睛】
    本题考查二次函数的应用,解题的关键是理解题意,熟练应用二次函数的性质解决问题.
    13、5
    【解析】
    由题意得, ,.
    ∴原式
    14、3,1
    【解析】
    直接得出2<<3,1<<5,进而得出答案.
    【详解】
    解:∵2<<3,1<<5,
    ∴的整数x的值是:3,1.
    故答案为:3,1.
    【点睛】
    此题主要考查了估算无理数的大小,正确得出接近的有理数是解题关键.
    15、1
    【解析】
    试题分析:设点C的坐标为(x,y),则B(-2,y)D(x,-2),设BD的函数解析式为y=mx,则y=-2m,x=-,∴k=xy=(-2m)·(-)=1.
    考点:求反比例函数解析式.
    16、
    【解析】
    试题解析:过点B作直线AC的垂线交直线AC于点F,如图所示.

    ∵△BCE的面积是△ADE的面积的2倍,E是AB的中点,
    ∴S△ABC=2S△BCE,S△ABD=2S△ADE,
    ∴S△ABC=2S△ABD,且△ABC和△ABD的高均为BF,
    ∴AC=2BD,
    ∴OD=2OC.
    ∵CD=k,
    ∴点A的坐标为(,3),点B的坐标为(-,-),
    ∴AC=3,BD=,
    ∴AB=2AC=6,AF=AC+BD=,
    ∴CD=k=.
    【点睛】本题考查了反比例函数图象上点的坐标特征、三角形的面积公式以及勾股定理.构造直角三角形利用勾股定理巧妙得出k值是解题的关键.
    17、
    【解析】
    由方程有两个实数根,得到根的判别式的值大于等于0,列出关于k的不等式,利用非负数的性质得到k的值,确定出方程,求出方程的解,代入所求式子中计算即可求出值.
    【详解】
    ∵方程x2+kx+=0有两个实数根,
    ∴b2-4ac=k2-4(k2-3k+)=-2k2+12k-18=-2(k-3)2≥0,
    ∴k=3,
    代入方程得:x2+3x+=(x+)2=0,
    解得:x1=x2=-,
    则=-.
    故答案为-.
    【点睛】
    此题考查了根的判别式,非负数的性质,以及配方法的应用,求出k的值是本题的突破点.

    三、解答题(共7小题,满分69分)
    18、(1)y=x2﹣2x﹣3;(2);(3)当k发生改变时,直线QH过定点,定点坐标为(0,﹣2)
    【解析】
    (1)把点A(﹣1,0),C(0,﹣3)代入抛物线表达式求得b,c,即可得出抛物线的解析式;
    (2)作CH⊥EF于H,设N的坐标为(1,n),证明Rt△NCH∽△MNF,可得m=n2+3n+1,因为﹣4≤n≤0,即可得出m的取值范围;
    (3)设点P(x1,y1),Q(x2,y2),则点H(﹣x1,y1),设直线HQ表达式为y=ax+t,用待定系数法和韦达定理可求得a=x2﹣x1,t=﹣2,即可得出直线QH过定点(0,﹣2).
    【详解】
    解:(1)∵抛物线y=x2+bx+c经过点A、C,
    把点A(﹣1,0),C(0,﹣3)代入,得:,
    解得,
    ∴抛物线的解析式为y=x2﹣2x﹣3;
    (2)如图,作CH⊥EF于H,
    ∵y=x2﹣2x﹣3=(x﹣1)2﹣4,
    ∴抛物线的顶点坐标E(1,﹣4),
    设N的坐标为(1,n),﹣4≤n≤0
    ∵∠MNC=90°,
    ∴∠CNH+∠MNF=90°,
    又∵∠CNH+∠NCH=90°,
    ∴∠NCH=∠MNF,
    又∵∠NHC=∠MFN=90°,
    ∴Rt△NCH∽△MNF,
    ∴,即
    解得:m=n2+3n+1=,
    ∴当时,m最小值为;
    当n=﹣4时,m有最大值,m的最大值=16﹣12+1=1.
    ∴m的取值范围是.
    (3)设点P(x1,y1),Q(x2,y2),
    ∵过点P作x轴平行线交抛物线于点H,
    ∴H(﹣x1,y1),
    ∵y=kx+2,y=x2,
    消去y得,x2﹣kx﹣2=0,
    x1+x2=k,x1x2=﹣2,
    设直线HQ表达式为y=ax+t,
    将点Q(x2,y2),H(﹣x1,y1)代入,得,
    ∴y2﹣y1=a(x1+x2),即k(x2﹣x1)=ka,
    ∴a=x2﹣x1,
    ∵=( x2﹣x1)x2+t,
    ∴t=﹣2,
    ∴直线HQ表达式为y=( x2﹣x1)x﹣2,
    ∴当k发生改变时,直线QH过定点,定点坐标为(0,﹣2).


    【点睛】
    本题主要考查的是二次函数的综合应用,解答本题主要应用了配方法求二次函数的最值、待定系数法求一次函数的解析式、(2)问通过相似三角形建立m与n的函数关系式是解题的关键.
    19、(Ⅰ)50、31;(Ⅱ)4;3;3.1;(Ⅲ)410人.
    【解析】
    (Ⅰ)利用家庭中拥有1台移动设备的人数除以其所占百分比即可得调查的学生人数,将拥有4台移动设备的人数除以总人数即可求得m的值;(Ⅱ)根据众数、中位数、加权平均数的定义计算即可;(Ⅲ)将样本中拥有3台移动设备的学生人数所占比例乘以总人数1500即可求解.
    【详解】
    解:(Ⅰ)本次接受随机抽样调查的学生人数为: =50(人),
    ∵×100=31%,
    ∴图①中m的值为31.
    故答案为50、31;
    (Ⅱ)∵这组样本数据中,4出现了16次,出现次数最多,
    ∴这组数据的众数为4;
    ∵将这组数据从小到大排列,其中处于中间的两个数均为3,有=3,
    ∴这组数据的中位数是3;
    由条形统计图可得=3.1,
    ∴这组数据的平均数是3.1.
    (Ⅲ)1500×18%=410(人).
    答:估计该校学生家庭中;拥有3台移动设备的学生人数约为410人.
    【点睛】
    本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
    20、
    【解析】
    根据分式的混合运算先计算括号里的再进行乘除.
    【详解】
    (x-1- )÷


    =
    【点睛】
    此题主要考查分式的计算,解题的关键是先进行通分,再进行加减乘除运算.
    21、(I)见解析;(II)见解析;(III)见解析.
    【解析】
    (I)根据两种方式的收费标准分别计算,填表即可;
    (II)根据表中给出A,B两种上宽带网的收费方式,分别写出y1、y2与t的数量关系式即可;
    (III)计算出三种方式在此取值范围的收费情况,然后比较即可得出答案.
    【详解】
    (I)当t=40h时,方式A超时费:0.05×60(40﹣25)=45,总费用:30+45=75,
    当t=100h时,方式B超时费:0.05×60(100﹣50)=150,总费用:50+150=200,
    填表如下:

    月费/元
    上网时间/h
    超时费/(元)
    总费用/(元)
    方式A
    30
    40
    45
    75
    方式B
    50
    100
    150
    200
    (II)当0≤t≤25时,y1=30,
    当t>25时,y1=30+0.05×60(t﹣25)=3t﹣45,
    所以y1=;
    当0≤t≤50时,y2=50,
    当t>50时,y2=50+0.05×60(t﹣50)=3t﹣100,
    所以y2=;
    (III)当75<t<100时,选用C种计费方式省钱.理由如下:
    当75<t<100时,y1=3t﹣45,y2=3t﹣100,y3=120,
    当t=75时,y1=180,y2=125,y3=120,
    所以当75<t<100时,选用C种计费方式省钱.
    【点睛】
    本题考查了一次函数的应用,解答时理解三种上宽带网的收费标准进而求出函数的解析式是解题的关键.
    22、(1)y=5x+9000;(2)每天至少获利10800元;(3)每天生产A产品250件,B产品350件获利最大,最大利润为9625元.
    【解析】
    试题分析:(1)A种品牌白酒x瓶,则B种品牌白酒(600-x)瓶;利润=A种品牌白酒瓶数×A种品牌白酒一瓶的利润+B种品牌白酒瓶数×B种品牌白酒一瓶的利润,列出函数关系式;
    (2)A种品牌白酒x瓶,则B种品牌白酒(600-x)瓶;成本=A种品牌白酒瓶数×A种品牌白酒一瓶的成本+B种品牌白酒瓶数×B种品牌白酒一瓶的成本,列出不等式,求x的值,再代入(1)求利润.
    (3)列出y与x的关系式,求y的最大值时,x的值.
    试题解析:
    (1)y=20x+15(600-x) =5x+9000,
    ∴y关于x的函数关系式为y=5x+9000;
    (2)根据题意,得50 x+35(600-x)≥26400,
    解得x≥360,
    ∵y=5x+9000,5>0,
    ∴y随x的增大而增大,
    ∴当x=360时,y有最小值为10800,
    ∴每天至少获利10800元;
    (3) ,
    ∵,∴当x=250时,y有最大值9625,
    ∴每天生产A产品250件,B产品350件获利最大,最大利润为9625元.
    23、(1)5(2)
    【解析】
    (1)根据实数的运算法则进行计算,要记住特殊锐角三角函数值;(2)根据分式的混合运算法则进行计算.
    【详解】
    解:(1)原式=4﹣2+2+2+1﹣4×
    =7﹣2
    =5;
    (2)原式=÷
    =•
    =.
    【点睛】
    本题考核知识点:实数运算,分式混合运算. 解题关键点:掌握相关运算法则.
    24、(1)80,100;(2)100件,22000元;(3)答案见解析.
    【解析】
    (1)先设A型商品的进价为a元/件,求得B型商品的进价为(a+20)元/件,由题意得等式 ,解得a=80,再检验a是否符合条件,得到答案.
    (2)先设购机A型商品x件,则由题意可得到等式80x+100(200﹣x)≤18000,解得,x≥100;再设获得的利润为w元,由题意可得w=(160﹣80)x+(240﹣100)(200﹣x)=﹣60x+28000,当x=100时代入w=﹣60x+28000,从而得答案.
    (3)设获得的利润为w元,由题意可得w(a﹣60)x+28000,分类讨论:当50<a<60时,当a=60时,当60<a<70时,各个阶段的利润,得出最大值.
    【详解】
    解:(1)设A型商品的进价为a元/件,则B型商品的进价为(a+20)元/件,

    解得,a=80,
    经检验,a=80是原分式方程的解,
    ∴a+20=100,
    答:A、B型商品的进价分别为80元/件、100元/件;
    (2)设购机A型商品x件,
    80x+100(200﹣x)≤18000,
    解得,x≥100,
    设获得的利润为w元,
    w=(160﹣80)x+(240﹣100)(200﹣x)=﹣60x+28000,
    ∴当x=100时,w取得最大值,此时w=22000,
    答:该客商计划最多投入18000元用于购买这两种商品,则至少要购进100件甲商品,若售完这些商品,则商场可获得的最大利润是22000元;
    (3)w=(160﹣80+a)x+(240﹣100)(200﹣x)=(a﹣60)x+28000,
    ∵50<a<70,
    ∴当50<a<60时,a﹣60<0,y随x的增大而减小,则甲100件,乙100件时利润最大;
    当a=60时,w=28000,此时甲乙只要是满足条件的整数即可;
    当60<a<70时,a﹣60>0,y随x的增大而增大,则甲120件,乙80件时利润最大.
    【点睛】
    本题考察一次函数的应用及一次不等式的应用,属于中档题,难度不大.

    相关试卷

    江苏省镇江市六校2021-2022学年中考数学最后一模试卷含解析: 这是一份江苏省镇江市六校2021-2022学年中考数学最后一模试卷含解析,共19页。试卷主要包含了下列计算正确的是,如图,内接于,若,则,下列说法中,正确的是等内容,欢迎下载使用。

    江苏省扬州市江都区国际校2021-2022学年中考数学最后冲刺模拟试卷含解析: 这是一份江苏省扬州市江都区国际校2021-2022学年中考数学最后冲刺模拟试卷含解析,共20页。试卷主要包含了一、单选题,下列运算正确的是等内容,欢迎下载使用。

    江苏省南通市崇川区2021-2022学年中考数学最后冲刺模拟试卷含解析: 这是一份江苏省南通市崇川区2021-2022学年中考数学最后冲刺模拟试卷含解析,共24页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map