江西省吉安市达标名校2021-2022学年中考数学五模试卷含解析
展开
这是一份江西省吉安市达标名校2021-2022学年中考数学五模试卷含解析,共23页。试卷主要包含了平面直角坐标系中的点P等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.已知一次函数y=ax﹣x﹣a+1(a为常数),则其函数图象一定过象限( )
A.一、二 B.二、三 C.三、四 D.一、四
2.实数a,b在数轴上的位置如图所示,以下说法正确的是( )
A.a+b=0 B.b<a C.ab>0 D.|b|<|a|
3.如图,l1∥l2,AF:FB=3:5,BC:CD=3:2,则AE:EC=( )
A.5:2 B.4:3 C.2:1 D.3:2
4.2017年底我国高速公路已开通里程数达13.5万公里,居世界第一,将数据135000用科学计数法表示正确的是( )
A.1.35×106 B.1.35×105 C.13.5×104 D.135×103
5.郑州地铁Ⅰ号线火车站站口分布如图所示,有A,B,C,D,E五个进出口,小明要从这里乘坐地铁去新郑机场,回来后仍从这里出站,则他恰好选择从同一个口进出的概率是( )
A. B. C. D.
6.某大型企业员工总数为28600人,数据“28600”用科学记数法可表示为( )
A.0.286×105 B.2.86×105 C.28.6×103 D.2.86×104
7.如图,直线a∥b,∠ABC的顶点B在直线a上,两边分别交b于A,C两点,若∠ABC=90°,∠1=40°,则∠2的度数为( )
A.30° B.40° C.50° D.60°
8.平面直角坐标系中的点P(2﹣m,m)在第一象限,则m的取值范围在数轴上可表示为( )
A. B.
C. D.
9.如图,两个一次函数图象的交点坐标为,则关于x,y的方程组的解为( )
A. B. C. D.
10.下列图标中,既是轴对称图形,又是中心对称图形的是( )
A. B. C. D.
二、填空题(共7小题,每小题3分,满分21分)
11.抛物线 y=3x2﹣6x+a 与 x 轴只有一个公共点,则 a 的值为_____.
12.某篮球架的侧面示意图如图所示,现测得如下数据:底部支架AB的长为1.74m,后拉杆AE的倾斜角∠EAB=53°,篮板MN到立柱BC的水平距离BH=1.74m,在篮板MN另一侧,与篮球架横伸臂DG等高度处安装篮筐,已知篮筐到地面的距离GH的标准高度为3.05m.则篮球架横伸臂DG的长约为_____m(结果保留一位小数,参考数据:sin53°≈, cos53°≈,tan53°≈).
13.如图,在5×5的正方形(每个小正方形的边长为1)网格中,格点上有A、B、C、D、E五个点,如果要求连接两个点之后线段的长度大于3且小于4,则可以连接_____. (写出一个答案即可)
14.对于实数,我们用符号表示两数中较小的数,如.因此, ________;若,则________.
15.如果x+y=5,那么代数式的值是______.
16.以矩形ABCD两条对角线的交点O为坐标原点,以平行于两边的方向为坐标轴,建立如图所示的平面直角坐标系,BE⊥AC,垂足为E.若双曲线y=(x>0)经过点D,则OB•BE的值为_____.
17.甲乙两人8次射击的成绩如图所示(单位:环)根据图中的信息判断,这8次射击中成绩比较稳定的是______(填“甲”或“乙”)
三、解答题(共7小题,满分69分)
18.(10分)问题探究
(1)如图①,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,则线段BE、EF、FD之间的数量关系为 ;
(2)如图②,在△ADC中,AD=2,CD=4,∠ADC是一个不固定的角,以AC为边向△ADC的另一侧作等边△ABC,连接BD,则BD的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由;
问题解决
(3)如图③,在四边形ABCD中,AB=AD,∠BAD=60°,BC=4,若BD⊥CD,垂足为点D,则对角线AC的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由.
19.(5分)如图,直角△ABC内接于⊙O,点D是直角△ABC斜边AB上的一点,过点D作AB的垂线交AC于E,过点C作∠ECP=∠AED,CP交DE的延长线于点P,连结PO交⊙O于点F.
(1)求证:PC是⊙O的切线;
(2)若PC=3,PF=1,求AB的长.
20.(8分)如图1,抛物线y=ax2+bx﹣2与x轴交于点A(﹣1,0),B(4,0)两点,与y轴交于点C,经过点B的直线交y轴于点E(0,2).
(1)求该抛物线的解析式;
(2)如图2,过点A作BE的平行线交抛物线于另一点D,点P是抛物线上位于线段AD下方的一个动点,连结PA,EA,ED,PD,求四边形EAPD面积的最大值;
(3)如图3,连结AC,将△AOC绕点O逆时针方向旋转,记旋转中的三角形为△A′OC′,在旋转过程中,直线OC′与直线BE交于点Q,若△BOQ为等腰三角形,请直接写出点Q的坐标.
21.(10分)2019年1月,温州轨道交通线正式运营,线有以下4种购票方式:
A.二维码过闸 B.现金购票 C.市名卡过闸 D.银联闪付
某兴趣小组为了解最受欢迎的购票方式,随机调查了某区的若干居民,得到如图所示的统计图,已知选择方式D的有200人,求选择方式A的人数.小博和小雅对A,B,C三种购票方式的喜爱程度相同,随机选取一种方式购票,求他们选择同一种购票方式的概率.(要求列表或画树状图).
22.(10分)抛物线y=﹣x2+(m﹣1)x+m与y轴交于(0,3)点.
(1)求出m的值并画出这条抛物线;
(2)求它与x轴的交点和抛物线顶点的坐标;
(3)x取什么值时,抛物线在x轴上方?
(4)x取什么值时,y的值随x值的增大而减小?
23.(12分)某家电销售商场电冰箱的销售价为每台1600元,空调的销售价为每台1400元,每台电冰箱的进价比每台空调的进价多300元,商场用9000元购进电冰箱的数量与用7200元购进空调数量相等.
(1)求每台电冰箱与空调的进价分别是多少?
(2)现在商场准备一次购进这两种家电共100台,设购进电冰箱x台,这100台家电的销售利润为Y元,要求购进空调数量不超过电冰箱数量的2倍,总利润不低于16200元,请分析合理的方案共有多少种?
(3)实际进货时,厂家对电冰箱出厂价下调K(0<K<150)元,若商场保持这两种家电的售价不变,请你根据以上信息及(2)中条件,设计出使这100台家电销售总利润最大的进货方案.
24.(14分)如图,已知二次函数y=﹣x2+bx+c(b,c为常数)的图象经过点A(3,1),点C(0,4),顶点为点M,过点A作AB∥x轴,交y轴于点D,交该二次函数图象于点B,连结BC.
(1)求该二次函数的解析式及点M的坐标;
(2)若将该二次函数图象向下平移m(m>0)个单位,使平移后得到的二次函数图象的顶点落在△ABC的内部(不包括△ABC的边界),求m的取值范围;
(3)点P是直线AC上的动点,若点P,点C,点M所构成的三角形与△BCD相似,请直接写出所有点P的坐标(直接写出结果,不必写解答过程).
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
分析:根据一次函数的图形与性质,由一次函数y=kx+b的系数k和b的符号,判断所过的象限即可.
详解:∵y=ax﹣x﹣a+1(a为常数),
∴y=(a-1)x-(a-1)
当a-1>0时,即a>1,此时函数的图像过一三四象限;
当a-1<0时,即a<1,此时函数的图像过一二四象限.
故其函数的图像一定过一四象限.
故选D.
点睛:此题主要考查了一次函数的图像与性质,利用一次函数的图像与性质的关系判断即可.
一次函数y=kx+b(k≠0,k、b为常数)的图像与性质:当k>0,b>0时,图像过一二三象限,y随x增大而增大;当k>0,b<0时,图像过一三四象限,y随x增大而增大;当k<0,b>0时,图像过一二四象限,y随x增大而减小;当k<0,b<0,图像过二三四象限,y随x增大而减小.
2、D
【解析】
根据图形可知,a是一个负数,并且它的绝对是大于1小于2,b是一个正数,并且它的绝对值是大于0小于1,即可得出|b|<|a|.
【详解】
A选项:由图中信息可知,实数a为负数,实数b为正数,但表示它们的点到原点的距离不相等,所以它们不互为相反数,和不为0,故A错误;
B选项:由图中信息可知,实数a为负数,实数b为正数,而正数都大于负数,故B错误;
C选项:由图中信息可知,实数a为负数,实数b为正数,而异号两数相乘积为负,负数都小于0,故C错误;
D选项:由图中信息可知,表示实数a的点到原点的距离大于表示实数b的点到原点的距离,而在数轴上表示一个数的点到原点的距离越远其绝对值越大,故D正确.
∴ 选D.
3、D
【解析】
依据平行线分线段成比例定理,即可得到AG=3x,BD=5x,CD=BD=2x,再根据平行线分线段成比例定理,即可得出AE与EC的比值.
【详解】
∵l1∥l2,
∴,
设AG=3x,BD=5x,
∵BC:CD=3:2,
∴CD=BD=2x,
∵AG∥CD,
∴.
故选D.
【点睛】
本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.
4、B
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:135000=1.35×105
故选B.
【点睛】
此题考查科学记数法表示较大的数.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
5、C
【解析】
列表得出进出的所有情况,再从中确定出恰好选择从同一个口进出的结果数,继而根据概率公式计算可得.
【详解】
解:列表得:
A
B
C
D
E
A
AA
BA
CA
DA
EA
B
AB
BB
CB
DB
EB
C
AC
BC
CC
DC
EC
D
AD
BD
CD
DD
ED
E
AE
BE
CE
DE
EE
∴一共有25种等可能的情况,恰好选择从同一个口进出的有5种情况,
∴恰好选择从同一个口进出的概率为=,
故选C.
【点睛】
此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
6、D
【解析】
用科学记数法表示较大的数时,一般形式为a×10﹣n,其中1≤|a|<10,n为整数,据此判断即可
【详解】
28600=2.86×1.故选D.
【点睛】
此题主要考查了用科学记数法表示较大的数,一般形式为a×10﹣n,其中1≤|a|<10,确定a与n的值是解题的关键
7、C
【解析】
依据平行线的性质,可得∠BAC的度数,再根据三角形内和定理,即可得到∠2的度数.
【详解】
解:∵a∥b,
∴∠1=∠BAC=40°,
又∵∠ABC=90°,
∴∠2=90°−40°=50°,
故选C.
【点睛】
本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.
8、B
【解析】
根据第二象限中点的特征可得: ,
解得: .
在数轴上表示为:
故选B.
考点:(1)、不等式组;(2)、第一象限中点的特征
9、A
【解析】
根据任何一个一次函数都可以化为一个二元一次方程,再根据两个函数交点坐标就是二元一次方程组的解可直接得到答案.
【详解】
解:∵直线y1=k1x+b1与y2=k2x+b2的交点坐标为(2,4),
∴二元一次方程组的解为
故选A.
【点睛】
本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.
10、D
【解析】
试题分析:根据轴对称图形和中心对称图形的概念,可知:
A既不是轴对称图形,也不是中心对称图形,故不正确;
B不是轴对称图形,但是中心对称图形,故不正确;
C是轴对称图形,但不是中心对称图形,故不正确;
D即是轴对称图形,也是中心对称图形,故正确.
故选D.
考点:轴对称图形和中心对称图形识别
二、填空题(共7小题,每小题3分,满分21分)
11、3
【解析】
根据抛物线与x轴只有一个公共交点,则判别式等于0,据此即可求解.
【详解】
∵抛物线y=3x2﹣6x+a与x轴只有一个公共点,
∴判别式Δ=36-12a=0,
解得:a=3,
故答案为3
【点睛】
本题考查了二次函数图象与x轴的公共点的个数的判定方法,如果△>0,则抛物线与x轴有两个不同的交点;如果△=0,与x轴有一个交点;如果△<0,与x轴无交点.
12、1.1.
【解析】
过点D作DO⊥AH于点O,先证明△ABC∽△AOD得出=,再根据已知条件求出AO,则OH=AH-AO=DG.
【详解】
解:过点D作DO⊥AH于点O,如图:
由题意得CB∥DO,
∴△ABC∽△AOD,
∴=,
∵∠CAB=53°,tan53°=,
∴tan∠CAB==,
∵AB=1.74m,
∴CB=1.31m,
∵四边形DGHO为长方形,
∴DO=GH=3.05m,OH=DG,
∴=,
则AO=1.1875m,
∵BH=AB=1.75m,
∴AH=3.5m,
则OH=AH-AO≈1.1m,
∴DG≈1.1m.
故答案为1.1.
【点睛】
本题考查了相似三角形的性质与应用,解题的关键是熟练的掌握相似三角形的性质与应用.
13、答案不唯一,如:AD
【解析】
根据勾股定理求出,根据无理数的估算方法解答即可.
【详解】
由勾股定理得:,.
故答案为答案不唯一,如:AD.
【点睛】
本题考查了无理数的估算和勾股定理,如果直角三角形的两条直角边长分别是,,斜边长为,那么.
14、 2或-1.
【解析】
①∵--,
∴min{-,-}=-;
②∵min{(x−1)2,x2}=1,
∴当x>0.5时,(x−1)2=1,
∴x−1=±1,
∴x−1=1,x−1=−1,
解得:x1=2,x2=0(不合题意,舍去),
当x⩽0.5时,x2=1,
解得:x1=1(不合题意,舍去),x2=−1,
15、1
【解析】
先将分式化简,然后将x+y=1代入即可求出答案
【详解】
当x+y=1时,
原式
=x+y=1,
故答案为:1.
【点睛】
本题考查分式的化简求值,解题的关键是利用运用分式的运算法则求解代数式.
16、1
【解析】
由双曲线y=(x>0)经过点D知S△ODF=k=,由矩形性质知S△AOB=2S△ODF=,据此可得OA•BE=1,根据OA=OB可得答案.
【详解】
如图,
∵双曲线y=(x>0)经过点D,
∴S△ODF=k=,
则S△AOB=2S△ODF=,即OA•BE=,
∴OA•BE=1,
∵四边形ABCD是矩形,
∴OA=OB,
∴OB•BE=1,
故答案为:1.
【点睛】
本题主要考查反比例函数图象上的点的坐标特征,解题的关键是掌握反比例函数系数k的几何意义及矩形的性质.
17、甲
【解析】
由图表明乙这8次成绩偏离平均数大,即波动大,而甲这8次成绩,分布比较集中,各数据偏离平均小,方差小,
则S2甲
相关试卷
这是一份江西省吉安市朝宗实验校2021-2022学年中考数学最后一模试卷含解析,共20页。试卷主要包含了化简,的相反数是等内容,欢迎下载使用。
这是一份河南省西华县重点达标名校2021-2022学年中考数学五模试卷含解析,共16页。试卷主要包含了考生必须保证答题卡的整洁,下列说法不正确的是,﹣6的倒数是等内容,欢迎下载使用。
这是一份广东省惠来县达标名校2021-2022学年中考数学五模试卷含解析,共23页。试卷主要包含了下列运算正确的是,运用乘法公式计算等内容,欢迎下载使用。