江西省南昌市十四校2021-2022学年中考数学模拟试题含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.数轴上分别有A、B、C三个点,对应的实数分别为a、b、c且满足,|a|>|c|,b•c<0,则原点的位置( )
A.点A的左侧 B.点A点B之间
C.点B点C之间 D.点C的右侧
2.在以下三个图形中,根据尺规作图的痕迹,能判断射线AD平分∠BAC的是( )
A.图2 B.图1与图2 C.图1与图3 D.图2与图3
3.如图,在平行四边形ABCD中,∠ABC的平分线BF交AD于点F,FE∥AB.若AB=5,AD=7,BF=6,则四边形ABEF的面积为( )
A.48 B.35 C.30 D.24
4.下列运算正确的是( )
A.5a+2b=5(a+b) B.a+a2=a3
C.2a3•3a2=6a5 D.(a3)2=a5
5.如图,在平面直角坐标系xOy中,点A从出发,绕点O顺时针旋转一周,则点A不经过( )
A.点M B.点N C.点P D.点Q
6.如图,在△ABC中,∠ACB=90°,点D为AB的中点,AC=3,cosA=,将△DAC沿着CD折叠后,点A落在点E处,则BE的长为( )
A.5 B.4 C.7 D.5
7.方程的解为( )
A.x=4 B.x=﹣3 C.x=6 D.此方程无解
8.如图,在△ABC中,D、E分别是边AB、AC的中点,若BC=6,则DE的长为( )
A.2 B.3 C.4 D.6
9.二次函数的图象如图所示,则一次函数与反比例函数在同一坐标系内的图象大致为( )
A. B. C. D.
10.如图1,点O为正六边形对角线的交点,机器人置于该正六边形的某顶点处,柱柱同学操控机器人以每秒1个单位长度的速度在图1中给出线段路径上运行,柱柱同学将机器人运行时间设为t秒,机器人到点A的距离设为y,得到函数图象如图2,通过观察函数图象,可以得到下列推断:①该正六边形的边长为1;②当t=3时,机器人一定位于点O;③机器人一定经过点D;④机器人一定经过点E;其中正确的有( )
A.①④ B.①③ C.①②③ D.②③④
11.如图,将△ABC沿着DE剪成一个小三角形ADE和一个四边形D'E'CB,若DE∥BC,四边形D'E'CB各边的长度如图所示,则剪出的小三角形ADE应是( )
A. B. C. D.
12.如图,四边形ABCD内接于⊙O,F是上一点,且,连接CF并延长交AD的延长线于点E,连接AC.若∠ABC=105°,∠BAC=25°,则∠E的度数为( )
A.45° B.50° C.55° D.60°
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,直线l1∥l2,则∠1+∠2=____.
14.不等式组的所有整数解的积为__________.
15.已知是一元二次方程的一个根,则方程的另一个根是________.
16.如图,两个三角形相似,AD=2,AE=3,EC=1,则BD=_____.
17.计算:6﹣=_____
18.二次函数的图象如图,若一元二次方程有实数根,则 的最大值为___
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,矩形ABCD中,E是AD的中点,延长CE,BA交于点F,连接AC,DF.求证:四边形ACDF是平行四边形;当CF平分∠BCD时,写出BC与CD的数量关系,并说明理由.
20.(6分)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),B(4,0),与y轴交于点C(0,2)
(1)求抛物线的表达式;
(2)抛物线的对称轴与x轴交于点M,点D与点C关于点M对称,试问在该抛物线的对称轴上是否存在点P,使△BMP与△ABD相似?若存在,请求出所有满足条件的P点的坐标;若不存在,请说明理由.
21.(6分)将一个等边三角形纸片AOB放置在平面直角坐标系中,点O(0,0),点B(6,0).点C、D分别在OB、AB边上,DC∥OA,CB=2.
(I)如图①,将△DCB沿射线CB方向平移,得到△D′C′B′.当点C平移到OB的中点时,求点D′的坐标;
(II)如图②,若边D′C′与AB的交点为M,边D′B′与∠ABB′的角平分线交于点N,当BB′多大时,四边形MBND′为菱形?并说明理由.
(III)若将△DCB绕点B顺时针旋转,得到△D′C′B,连接AD′,边D′C′的中点为P,连接AP,当AP最大时,求点P的坐标及AD′的值.(直接写出结果即可).
22.(8分)【发现证明】
如图1,点E,F分别在正方形ABCD的边BC,CD上,∠EAF=45°,试判断BE,EF,FD之间的数量关系.
小聪把△ABE绕点A逆时针旋转90°至△ADG,通过证明△AEF≌△AGF;从而发现并证明了EF=BE+FD.
【类比引申】
(1)如图2,点E、F分别在正方形ABCD的边CB、CD的延长线上,∠EAF=45°,连接EF,请根据小聪的发现给你的启示写出EF、BE、DF之间的数量关系,并证明;
【联想拓展】
(2)如图3,如图,∠BAC=90°,AB=AC,点E、F在边BC上,且∠EAF=45°,若BE=3,EF=5,求CF的长.
23.(8分)如图,内接于,,的延长线交于点.
(1)求证:平分;
(2)若,,求和的长.
24.(10分)庐阳春风体育运动品商店从厂家购进甲,乙两种T恤共400件,其每件的售价与进货量(件)之间的关系及成本如下表所示:
T恤
每件的售价/元
每件的成本/元
甲
50
乙
60
(1)当甲种T恤进货250件时,求两种T恤全部售完的利润是多少元;若所有的T恤都能售完,求该商店获得的总利润(元)与乙种T恤的进货量(件)之间的函数关系式;在(2)的条件下,已知两种T恤进货量都不低于100件,且所进的T恤全部售完,该商店如何安排进货才能使获得的利润最大?
25.(10分)如图,已知▱ABCD.作∠B的平分线交AD于E点。(用尺规作图法,保留作图痕迹,不要求写作法);若▱ABCD的周长为10,CD=2,求DE的长。
26.(12分)某兴趣小组为了了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图.
请根据以上信息解答下列问题:课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为______;请补全条形统计图;该校共有1200名男生,请估计全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为1200×=108”,请你判断这种说法是否正确,并说明理由.
27.(12分)已知:如图,梯形ABCD中,AD∥BC,DE∥AB,与对角线交于点,∥,且FG=EF.
(1)求证:四边形是菱形;
(2)联结AE,又知AC⊥ED,求证: .
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】
分析:
根据题中所给条件结合A、B、C三点的相对位置进行分析判断即可.
详解:
A选项中,若原点在点A的左侧,则,这与已知不符,故不能选A;
B选项中,若原点在A、B之间,则b>0,c>0,这与b·c<0不符,故不能选B;
C选项中,若原点在B、C之间,则且b·c<0,与已知条件一致,故可以选C;
D选项中,若原点在点C右侧,则b<0,c<0,这与b·c<0不符,故不能选D.
故选C.
点睛:理解“数轴上原点右边的点表示的数是正数,原点表示的是0,原点左边的点表示的数是负数,距离原点越远的点所表示的数的绝对值越大”是正确解答本题的关键.
2、C
【解析】
【分析】根据角平分线的作图方法可判断图1,根据图2的作图痕迹可知D为BC中点,不是角平分线,图3中根据作图痕迹可通过判断三角形全等推导得出AD是角平分线.
【详解】图1中,根据作图痕迹可知AD是角平分线;
图2中,根据作图痕迹可知作的是BC的垂直平分线,则D为BC边的中点,因此AD不是角平分线;
图3:由作图方法可知AM=AE,AN=AF,∠BAC为公共角,∴△AMN≌△AEF,
∴∠3=∠4,
∵AM=AE,AN=AF,∴MF=EN,又∵∠MDF=∠EDN,∴△FDM≌△NDE,
∴DM=DE,
又∵AD是公共边,∴△ADM≌△ADE,
∴∠1=∠2,即AD平分∠BAC,
故选C.
【点睛】本题考查了尺规作图,三角形全等的判定与性质等,熟知角平分的尺规作图方法、全等三角形的判定与性质是解题的关键.
3、D
【解析】
分析:首先证明四边形ABEF为菱形,根据勾股定理求出对角线AE的长度,从而得出四边形的面积.
详解:∵AB∥EF,AF∥BE, ∴四边形ABEF为平行四边形, ∵BF平分∠ABC,
∴四边形ABEF为菱形, 连接AE交BF于点O, ∵BF=6,BE=5,∴BO=3,EO=4,
∴AE=8,则四边形ABEF的面积=6×8÷2=24,故选D.
点睛:本题主要考查的是菱形的性质以及判定定理,属于中等难度的题型.解决本题的关键就是根据题意得出四边形为菱形.
4、C
【解析】
直接利用合并同类项法则以及单项式乘以单项式、幂的乘方运算法则分别化简得出答案.
【详解】
A、5a+2b,无法计算,故此选项错误;
B、a+a2,无法计算,故此选项错误;
C、2a3•3a2=6a5,故此选项正确;
D、(a3)2=a6,故此选项错误.
故选C.
【点睛】
此题主要考查了合并同类项以及单项式乘以单项式、幂的乘方运算,正确掌握运算法则是解题关键.
5、C
【解析】
根据旋转的性质:对应点到旋转中心的距离相等,逐一判断即可.
【详解】
解:连接OA、OM、ON、OP,根据旋转的性质,点A的对应点到旋转中心的距离与OA的长度应相等
根据网格线和勾股定理可得:OA=,OM=,ON=,OP=,OQ=5
∵OA=OM=ON=OQ≠OP
∴则点A不经过点P
故选C.
【点睛】
此题考查的是旋转的性质和勾股定理,掌握旋转的性质:对应点到旋转中心的距离相等和用勾股定理求线段的长是解决此题的关键.
6、C
【解析】
连接AE,根据余弦的定义求出AB,根据勾股定理求出BC,根据直角三角形的性质求出CD,根据面积公式出去AE,根据翻转变换的性质求出AF,根据勾股定理、三角形中位线定理计算即可.
【详解】
解:连接AE,
∵AC=3,cos∠CAB=,
∴AB=3AC=9,
由勾股定理得,BC==6,
∠ACB=90°,点D为AB的中点,
∴CD=AB=,
S△ABC=×3×6=9,
∵点D为AB的中点,
∴S△ACD=S△ABC=,
由翻转变换的性质可知,S四边形ACED=9,AE⊥CD,
则×CD×AE=9,
解得,AE=4,
∴AF=2,
由勾股定理得,DF==,
∵AF=FE,AD=DB,
∴BE=2DF=7,
故选C.
【点睛】
本题考查的是翻转变换的性质、直角三角形的性质,翻转变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
7、C
【解析】
先把分式方程化为整式方程,求出x的值,代入最简公分母进行检验.
【详解】
方程两边同时乘以x-2得到1-(x-2)=﹣3,解得x=6.将x=6代入x-2得6-2=4,∴x=6就是原方程的解.故选C
【点睛】
本题考查的是解分式方程,熟知解分式方程的基本步骤是解答此题的关键.
8、B
【解析】
根据三角形的中位线等于第三边的一半进行计算即可.
【详解】
∵D、E分别是△ABC边AB、AC的中点,
∴DE是△ABC的中位线,
∵BC=6,
∴DE=BC=1.
故选B.
【点睛】
本题考查了三角形的中位线定理,中位线是三角形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用.
9、D
【解析】
根据二次函数图象开口向上得到a>0,再根据对称轴确定出b,根据二次函数图形与轴的交点个数,判断的符号,根据图象发现当x=1时y=a+b+c<0,然后确定出一次函数图象与反比例函数图象的情况,即可得解.
【详解】
∵二次函数图象开口方向向上,
∴a>0,
∵对称轴为直线
∴b<0,
二次函数图形与轴有两个交点,则>0,
∵当x=1时y=a+b+c<0,
∴的图象经过第二四象限,且与y轴的正半轴相交,
反比例函数图象在第二、四象限,
只有D选项图象符合.
故选:D.
【点睛】
考查反比例函数的图象,一次函数的图象,二次函数的图象,掌握函数图象与系数的关系是解题的关键.
10、C
【解析】
根据图象起始位置猜想点B或F为起点,则可以判断①正确,④错误.结合图象判断3≤t≤4图象的对称性可以判断②正确.结合图象易得③正确.
【详解】
解:由图象可知,机器人距离点A1个单位长度,可能在F或B点,则正六边形边长为1.故①正确;
观察图象t在3-4之间时,图象具有对称性则可知,机器人在OB或OF上,
则当t=3时,机器人距离点A距离为1个单位长度,机器人一定位于点O,故②正确;
所有点中,只有点D到A距离为2个单位,故③正确;
因为机器人可能在F点或B点出发,当从B出发时,不经过点E,故④错误.
故选:C.
【点睛】
本题为动点问题的函数图象探究题,解答时要注意动点到达临界前后时图象的变化趋势.
11、C
【解析】
利用相似三角形的性质即可判断.
【详解】
设AD=x,AE=y,
∵DE∥BC,
∴△ADE∽△ABC,
∴,
∴,
∴x=9,y=12,
故选:C.
【点睛】
考查平行线的性质,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
12、B
【解析】
先根据圆内接四边形的性质求出∠ADC的度数,再由圆周角定理得出∠DCE的度数,根据三角形外角的性质即可得出结论.
【详解】
∵四边形ABCD内接于⊙O,∠ABC=105°,
∴∠ADC=180°﹣∠ABC=180°﹣105°=75°.
∵,∠BAC=25°,
∴∠DCE=∠BAC=25°,
∴∠E=∠ADC﹣∠DCE=75°﹣25°=50°.
【点睛】
本题考查圆内接四边形的性质,圆周角定理.圆内接四边形对角互补.在同圆或等圆中,同弧或等弧所对的圆心角相等,而同弧所对的圆周角等于圆心角的一半,所以在同圆或等圆中,同弧或等弧所对的圆周角相等.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、30°
【解析】
分别过A、B作l1的平行线AC和BD,则可知AC∥BD∥l1∥l2,再利用平行线的性质求得答案.
【详解】
如图,分别过A、B作l1的平行线AC和BD,
∵l1∥l2,
∴AC∥BD∥l1∥l2,
∴∠1=∠EAC,∠2=∠FBD,∠CAB+∠DBA=180°,
∵∠EAB+∠FBA=125°+85°=210°,
∴∠EAC+∠CAB+∠DBA+∠FBD=210°,
即∠1+∠2+180°=210°,
∴∠1+∠2=30°,
故答案为30°.
【点睛】
本题主要考查平行线的性质和判定,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补.
14、1
【解析】
解:,
解不等式①得:,
解不等式②得:,
∴不等式组的整数解为﹣1,1,1…51,
所以所有整数解的积为1,
故答案为1.
【点睛】
本题考查一元一次不等式组的整数解,准确计算是关键,难度不大.
15、
【解析】
通过观察原方程可知,常数项是一未知数,而一次项系数为常数,因此可用两根之和公式进行计算,将2-代入计算即可.
【详解】
设方程的另一根为x1,
又∵x=2-,由根与系数关系,得x1+2-=4,解得x1=2+.
故答案为:
【点睛】
解决此类题目时要认真审题,确定好各系数的数值与正负,然后适当选择一个根与系数的关系式求解.
16、1
【解析】
根据相似三角形的对应边的比相等列出比例式,计算即可.
【详解】
∵△ADE∽△ACB,∴=,即=,
解得:BD=1.
故答案为1.
【点睛】
本题考查的是相似三角形的性质,掌握相似三角形的对应边的比相等是解题的关键.
17、3
【解析】
按照二次根式的运算法则进行运算即可.
【详解】
【点睛】
本题考查的知识点是二次根式的运算,解题关键是注意化简算式.
18、3
【解析】
试题解析::∵抛物线的开口向上,顶点纵坐标为-3,
∴a>1.
-=-3,即b2=12a,
∵一元二次方程ax2+bx+m=1有实数根,
∴△=b2-4am≥1,即12a-4am≥1,即12-4m≥1,解得m≤3,
∴m的最大值为3,
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)证明见解析;(2)BC=2CD,理由见解析.
【解析】
分析:(1)利用矩形的性质,即可判定△FAE≌△CDE,即可得到CD=FA,再根据CD∥AF,即可得出四边形ACDF是平行四边形;
(2)先判定△CDE是等腰直角三角形,可得CD=DE,再根据E是AD的中点,可得AD=2CD,依据AD=BC,即可得到BC=2CD.
详解:(1)∵四边形ABCD是矩形,
∴AB∥CD,
∴∠FAE=∠CDE,
∵E是AD的中点,
∴AE=DE,
又∵∠FEA=∠CED,
∴△FAE≌△CDE,
∴CD=FA,
又∵CD∥AF,
∴四边形ACDF是平行四边形;
(2)BC=2CD.
证明:∵CF平分∠BCD,
∴∠DCE=45°,
∵∠CDE=90°,
∴△CDE是等腰直角三角形,
∴CD=DE,
∵E是AD的中点,
∴AD=2CD,
∵AD=BC,
∴BC=2CD.
点睛:本题主要考查了矩形的性质以及平行四边形的判定与性质,要证明两直线平行和两线段相等、两角相等,可考虑将要证的直线、线段、角、分别置于一个四边形的对边或对角的位置上,通过证明四边形是平行四边形达到上述目的.
20、 (1)y=﹣x2+x+2;(2)满足条件的点P的坐标为(,)或(,﹣)或(,5)或(,﹣5).
【解析】
(1)利用待定系数法求抛物线的表达式;
(2)使△BMP与△ABD相似的有三种情况,分别求出这三个点的坐标.
【详解】
(1)∵抛物线与x轴交于点A(﹣1,0),B(4,0),
∴设抛物线的解析式为y=a(x+1)(x﹣4),
∵抛物线与y轴交于点C(0,2),
∴a×1×(﹣4)=2,
∴a=﹣,
∴抛物线的解析式为y=﹣(x+1)(x﹣4)=﹣x2+x+2;
(2)如图1,连接CD,∵抛物线的解析式为y=﹣x2+x+2,
∴抛物线的对称轴为直线x=,
∴M(,0),∵点D与点C关于点M对称,且C(0,2),
∴D(3,﹣2),
∵MA=MB,MC=MD,
∴四边形ACBD是平行四边形,
∵A(﹣1,0),B(4,0),C(3,﹣22),
∴AB2=25,BD2=(4﹣1)2+22=5,AD2=(3+1)2+22=20,
∴AD2+BD2=AB2,
∴△ABD是直角三角形,
∴∠ADB=90°,
设点P(,m),
∴MP=|m|,
∵M(,0),B(4,0),
∴BM=,
∵△BMP与△ABD相似,
∴①当△BMP∽ADB时,
∴,
∴,
∴m=±,
∴P(,)或(,﹣),
②当△BMP∽△BDA时,
,
∴,
∴m=±5,
∴P(,5)或(,﹣5),
即:满足条件的点P的坐标为P(,)或(,﹣)或(,5)或(,﹣5).
【点睛】
本题考查了二次函数的应用,解题的关键是熟练的掌握二次函数的应用.
21、(Ⅰ)D′(3+,3);(Ⅱ)当BB'=时,四边形MBND'是菱形,理由见解析;
(Ⅲ)P().
【解析】
(Ⅰ)如图①中,作DH⊥BC于H.首先求出点D坐标,再求出CC′的长即可解决问题;
(Ⅱ)当BB'=时,四边形MBND'是菱形.首先证明四边形MBND′是平行四边形,再证明BB′=BC′即可解决问题;
(Ⅲ)在△ABP中,由三角形三边关系得,AP<AB+BP,推出当点A,B,P三点共线时,AP最大.
【详解】
(Ⅰ)如图①中,作DH⊥BC于H,
∵△AOB是等边三角形,DC∥OA,
∴∠DCB=∠AOB=60°,∠CDB=∠A=60°,
∴△CDB是等边三角形,
∵CB=2,DH⊥CB,
∴CH=HB=,DH=3,
∴D(6﹣,3),
∵C′B=3,
∴CC′=2﹣3,
∴DD′=CC′=2﹣3,
∴D′(3+,3).
(Ⅱ)当BB'=时,四边形MBND'是菱形,
理由:如图②中,
∵△ABC是等边三角形,
∴∠ABO=60°,
∴∠ABB'=180°﹣∠ABO=120°,
∵BN是∠ACC'的角平分线,
∴∠NBB′'=∠ABB'=60°=∠D′C′B,
∴D'C'∥BN,∵AB∥B′D′
∴四边形MBND'是平行四边形,
∵∠ME'C'=∠MCE'=60°,∠NCC'=∠NC'C=60°,
∴△MC′B'和△NBB'是等边三角形,
∴MC=CE',NC=CC',
∵B'C'=2,
∵四边形MBND'是菱形,
∴BN=BM,
∴BB'=B'C'=;
(Ⅲ)如图连接BP,
在△ABP中,由三角形三边关系得,AP<AB+BP,
∴当点A,B,P三点共线时,AP最大,
如图③中,在△D'BE'中,由P为D'E的中点,得AP⊥D'E',PD'=,
∴CP=3,
∴AP=6+3=9,
在Rt△APD'中,由勾股定理得,AD'==2.
此时P(,﹣).
【点睛】
此题是四边形综合题,主要考查了平行四边形的判定和性质,菱形的性质,平移和旋转的性质,等边三角形的判定和性质,勾股定理,解(2)的关键是四边形MCND'是平行四边形,解(3)的关键是判断出点A,C,P三点共线时,AP最大.
22、(1)DF=EF+BE.理由见解析;(2)CF=1.
【解析】(1)把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合,证出△AEF≌△AFG,根据全等三角形的性质得出EF=FG,即可得出答案;
(2)根据旋转的性质的AG=AE,CG=BE,∠ACG=∠B,∠EAG=90°,∠FCG=∠ACB+∠ACG=∠ACB+∠B=90°,根据勾股定理有FG2=FC2+CG2=BE2+FC2;关键全等三角形的性质得到FG=EF,利用勾股定理可得CF.
解:(1)DF=EF+BE.理由:如图1所示,
∵AB=AD,
∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合,
∵∠ADC=∠ABE=90°,∴点C、D、G在一条直线上,∴EB=DG,AE=AG,∠EAB=∠GAD,
∵∠BAG+∠GAD=90°,∴∠EAG=∠BAD=90°,
∵∠EAF=15°,∴∠FAG=∠EAG﹣∠EAF=90°﹣15°=15°,∴∠EAF=∠GAF,
在△EAF和△GAF中,,∴△EAF≌△GAF,∴EF=FG,∵FD=FG+DG,∴DF=EF+BE;
(2)∵∠BAC=90°,AB=AC,∴将△ABE绕点A顺时针旋转90°得△ACG,连接FG,如图2,
∴AG=AE,CG=BE,∠ACG=∠B,∠EAG=90°,
∴∠FCG=∠ACB+∠ACG=∠ACB+∠B=90°,∴FG2=FC2+CG2=BE2+FC2;
又∵∠EAF=15°,而∠EAG=90°,∴∠GAF=90°﹣15°,
在△AGF与△AEF中,,∴△AEF≌△AGF,∴EF=FG,
∴CF2=EF2﹣BE2=52﹣32=16,∴CF=1.
“点睛”本题考查了全等三角形的性质和判定,勾股定理,正方形的性质的应用,正确的作出辅助线构造全等三角形是解题的关键,此题是一道综合题,难度较大,题目所给例题的思路,为解决此题做了较好的铺垫.
23、 (1)证明见解析;(2)AC= , CD= ,
【解析】
分析:(1)延长AO交BC于H,连接BO,证明A、O在线段BC的垂直平分线上,得出AO⊥BC,再由等腰三角形的性质即可得出结论;(2)延长CD交⊙O于E,连接BE,则CE是⊙O的直径,由圆周角定理得出∠EBC=90°,∠E=∠BAC,得出sinE=sin∠BAC,求出CE=BC=10,由勾股定理求出BE=8,证出BE∥OA,得出,求出OD=,得出CD=,而BE∥OA,由三角形中位线定理得出OH=BE=4,CH=BC=3,在Rt△ACH中,由勾股定理求出AC的长即可.
本题解析:
解:(1)证明:延长AO交BC于H,连接BO.
∵AB=AC,OB=OC,
∴A,O在线段BC的垂直平分线上.∴AO⊥BC.
又∵AB=AC,∴AO平分∠BAC.
(2)延长CD交⊙O于E,连接BE,则CE是⊙O的直径.
∴∠EBC=90°,BC⊥BE.
∵∠E=∠BAC,∴sinE=sin∠BAC.
∴=.∴CE=BC=10.
∴BE==8,OA=OE=CE=5.
∵AH⊥BC,∴BE∥OA.
∴=,即=,
解得OD=.∴CD=5+=.
∵BE∥OA,即BE∥OH,OC=OE,∴OH是△CEB的中位线.
∴OH=BE=4,CH=BC=3.∴AH=5+4=9.
在Rt△ACH中,AC===3.
点睛:本题考查了等腰三角形的判定与性质、三角函数及圆的有关计算,(1)中由三线合一定理求解是解题的关键,(2)中由圆周角定理得出∠EBC=90°,∠E=∠BAC,再利用三角函数及三角形中位线定理求出AC即可,本题综合性强,有一定难度.
24、(1)10750;(2);(3)最大利润为10750元.
【解析】
(1)根据“利润=销售总额-总成本”结合两种T恤的销售数量代入相关代数式进行求解即可;
(2)根据题意,分两种情况进行讨论:①0
【详解】
(1)∵甲种T恤进货250件
∴乙种T恤进货量为:400-250=150件
故由题意得,;
(2)①
②;
故.
(3)由题意,,①,,
②,
综上,最大利润为10750元.
【点睛】
本题考查了二次函数的应用,找出题中的等量关系以及根据题意确定二次函数的解析式是解题的关键.
25、(1)作图见解析;(2)1
【解析】
(1)以点B为圆心,任意长为半径画弧分别与AB、BC相交。然后再分别以交点为圆心,以交点间的距离为半径分别画弧,两弧相交于一点,画出射线BE即得.
(2)根据平行四边形的对边相等,可得AB+AD=5,由两直线平行内错角相等可得∠AEB=∠EBC,利用角平分线即得∠ABE=∠EBC,即证 ∠AEB=∠ABE .根据等角对等边可得AB=AE=2,从而求出ED的长.
【详解】
(1)解:如图所示:
(2)解:∵平行四边形ABCD的周长为10
∴AB+AD=5
∵AD//BC
∴∠AEB=∠EBC
又∵BE平分∠ABC
∴∠ABE=∠EBC
∴∠AEB=∠ABE
∴AB=AE=2
∴ED=AD-AE=3-2=1
【点睛】
此题考查作图-基本作图和平行四边形的性质,解题关键在于掌握作图法则
26、(1)144°;(2)补图见解析;(3)160人;(4)这个说法不正确,理由见解析.
【解析】
试题分析:(1)360°×(1﹣15%﹣45%)=360°×40%=144°;故答案为144°;
(2)“经常参加”的人数为:300×40%=120人,喜欢篮球的学生人数为:120﹣27﹣33﹣20=120﹣80=40人;补全统计图如图所示;
(3)全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数约为:1200×=160人;
(4)这个说法不正确.理由如下:小明得到的108人是经常参加课外体育锻炼的男生中最喜欢的项目是乒乓球的人数,而全校偶尔参加课外体育锻炼的男生中也会有最喜欢乒乓球的,因此应多于108人.
考点:①条形统计图;②扇形统计图.
27、 (1)见解析;(2)见解析
【解析】
分析:(1)由两组对边分别平行的四边形是平行四边形,得到是平行四边形.
再由平行线分线段成比例定理得到:, ,=,即可得到结论;
(2)连接,与交于点.由菱形的性质得到⊥,进而得到 ,,即有,得到△∽△,由相似三角形的性质即可得到结论.
详解:(1)∵ ∥∥,∴四边形是平行四边形.
∵∥,∴.
同理 .
得:=
∵,∴.
∴四边形是菱形.
(2)连接,与交于点.
∵四边形是菱形,∴⊥.
得 .同理.
∴.
又∵是公共角,∴△∽△.
∴.
∴.
点睛:本题主要考查了菱形的判定和性质以及相似三角形的判定与性质.灵活运用菱形的判定与性质是解题的关键.
江西省南昌市十四校2021-2022学年中考数学五模试卷含解析: 这是一份江西省南昌市十四校2021-2022学年中考数学五模试卷含解析,共21页。试卷主要包含了关于x的方程,已知二次函数y=a等内容,欢迎下载使用。
江西省南昌育华校2021-2022学年中考数学模拟精编试卷含解析: 这是一份江西省南昌育华校2021-2022学年中考数学模拟精编试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,将一副三角尺,-5的相反数是等内容,欢迎下载使用。
江西省南昌市第二中学2021-2022学年中考数学模拟预测题含解析: 这是一份江西省南昌市第二中学2021-2022学年中考数学模拟预测题含解析,共25页。试卷主要包含了下列计算正确的是,下列图形不是正方体展开图的是等内容,欢迎下载使用。