江西省上饶县七中2022年中考数学模试卷含解析
展开
这是一份江西省上饶县七中2022年中考数学模试卷含解析,共23页。试卷主要包含了若二次函数的图象经过点,下列说法正确的是,对于反比例函数y=,计算的结果是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图1是2019年4月份的日历,现用一长方形在日历表中任意框出4个数(如图2),下列表示a,b,c,d之间关系的式子中不正确的是( )
A.a﹣d=b﹣c B.a+c+2=b+d C.a+b+14=c+d D.a+d=b+c
2.工人师傅用一张半径为24cm,圆心角为150°的扇形铁皮做成一个圆锥的侧面,则这个圆锥的高为( )cm.
A. B. C. D.
3.如图,在正方形OABC中,点A的坐标是(﹣3,1),点B的纵坐标是4,则B,C两点的坐标分别是( )
A.(﹣2,4),(1,3) B.(﹣2,4),(2,3)
C.(﹣3,4),(1,4) D.(﹣3,4),(1,3)
4.一个数和它的倒数相等,则这个数是( )
A.1 B.0 C.±1 D.±1和0
5.若二次函数的图象经过点(﹣1,0),则方程的解为( )
A., B., C., D.,
6.下列说法正确的是( )
A.一个游戏的中奖概率是则做10次这样的游戏一定会中奖
B.为了解全国中学生的心理健康情况,应该采用普查的方式
C.一组数据 8 , 8 , 7 , 10 , 6 , 8 , 9 的众数和中位数都是 8
D.若甲组数据的方差 S=" 0.01" ,乙组数据的方差 s= 0 .1 ,则乙组数据比甲组数据稳定
7.已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为( )
A.8或10 B.8 C.10 D.6或12
8.如图,点A,B为定点,定直线l//AB,P是l上一动点.点M,N分别为PA,PB的中点,对于下列各值:
①线段MN的长;
②△PAB的周长;
③△PMN的面积;
④直线MN,AB之间的距离;
⑤∠APB的大小.
其中会随点P的移动而变化的是( )
A.②③ B.②⑤ C.①③④ D.④⑤
9.对于反比例函数y=(k≠0),下列所给的四个结论中,正确的是( )
A.若点(3,6)在其图象上,则(﹣3,6)也在其图象上
B.当k>0时,y随x的增大而减小
C.过图象上任一点P作x轴、y轴的线,垂足分别A、B,则矩形OAPB的面积为k
D.反比例函数的图象关于直线y=﹣x成轴对称
10.计算的结果是( )
A. B. C.1 D.2
11.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x件才能按时交货,则x应满足的方程为( )
A. B.
C. D.
12.如图,将一张三角形纸片的一角折叠,使点落在处的处,折痕为.如果,,,那么下列式子中正确的是( )
A. B. C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,在平面直角坐标系中,反比例函数y= (x>0)的图象交矩形OABC的边AB于点D,交BC于点E,且BE=2EC,若四边形ODBE的面积为8,则k=_____.
14.如图,正方形ABCD和正方形OEFG中, 点A和点F的坐标分别为 (3,2),(-1,-1),则两个正方形的位似中心的坐标是_________.
15.如图,10块相同的长方形墙砖拼成一个长方形,设长方形墙砖的长为x厘米,则依题意列方程为_________.
16.如图,将三角形AOC绕点O顺时针旋转120°得三角形BOD,已知OA=4,OC=1,那么图中阴影部分的面积为_____.(结果保留π)
17.估计无理数在连续整数___与____之间.
18.某校组织“优质课大赛”活动,经过评比有两名男教师和两名女教师获得一等奖,学校将从这四名教师中随机挑选两位教师参加市教育局组织的决赛,挑选的两位教师恰好是一男一女的概率为____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,在 Rt△ABC 中,∠C=90°,AC=3,BC=4,∠ABC 的平分线交边 AC于点 D,延长 BD 至点 E,且BD=2DE,连接 AE.
(1)求线段 CD 的长;(2)求△ADE 的面积.
20.(6分)二次函数y=ax2+bx+c(a,b,c为常数,且a≠1)中的x与y的部分对应值如表
x
﹣1
1
1
3
y
﹣1
3
5
3
下列结论:
①ac<1;
②当x>1时,y的值随x值的增大而减小.
③3是方程ax2+(b﹣1)x+c=1的一个根;
④当﹣1<x<3时,ax2+(b﹣1)x+c>1.
其中正确的结论是 .
21.(6分)某中学为开拓学生视野,开展“课外读书周”活动,活动后期随机调查了九年级部分学生一周的课外阅读时间,并将结果绘制成两幅不完整的统计图,请你根据统计图的信息回答下列问题:
(1)本次调查的学生总数为_____人,被调查学生的课外阅读时间的中位数是_____小时,众数是_____小时;并补全条形统计图;
(2)在扇形统计图中,课外阅读时间为5小时的扇形的圆心角度数是_____;
(3)若全校九年级共有学生800人,估计九年级一周课外阅读时间为6小时的学生有多少人?
22.(8分)随着中国传统节日“端午节”的临近,东方红商场决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元.打折前甲、乙两种品牌粽子每盒分别为多少元?阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?
23.(8分)为了计算湖中小岛上凉亭P到岸边公路l的距离,某数学兴趣小组在公路l上的点A处,测得凉亭P在北偏东60°的方向上;从A处向正东方向行走200米,到达公路l上的点B处,再次测得凉亭P在北偏东45°的方向上,如图所示.求凉亭P到公路l的距离.(结果保留整数,参考数据:≈1.414,≈1.732)
24.(10分)如图1,在平面直角坐标系中,O为坐标原点,抛物线y=ax2+bx+3交x轴于B、C两点(点B在左,点C在右),交y轴于点A,且OA=OC,B(﹣1,0).
(1)求此抛物线的解析式;
(2)如图2,点D为抛物线的顶点,连接CD,点P是抛物线上一动点,且在C、D两点之间运动,过点P作PE∥y轴交线段CD于点E,设点P的横坐标为t,线段PE长为d,写出d与t的关系式(不要求写出自变量t的取值范围);
(3)如图3,在(2)的条件下,连接BD,在BD上有一动点Q,且DQ=CE,连接EQ,当∠BQE+∠DEQ=90°时,求此时点P的坐标.
25.(10分)如图,已知点A(1,a)是反比例函数y1=的图象上一点,直线y2=﹣与反比例函数y1=的图象的交点为点B、D,且B(3,﹣1),求:
(Ⅰ)求反比例函数的解析式;
(Ⅱ)求点D坐标,并直接写出y1>y2时x的取值范围;
(Ⅲ)动点P(x,0)在x轴的正半轴上运动,当线段PA与线段PB之差达到最大时,求点P的坐标.
26.(12分)如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.
求证:△ABM∽△EFA;若AB=12,BM=5,求DE的长.
27.(12分)先化简,再求值:(m+2﹣)•,其中m=﹣.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、A
【解析】
观察日历中的数据,用含a的代数式表示出b,c,d的值,再将其逐一代入四个选项中,即可得出结论.
【详解】
解:依题意,得:b=a+1,c=a+7,d=a+1.
A、∵a﹣d=a﹣(a+1)=﹣1,b﹣c=a+1﹣(a+7)=﹣6,
∴a﹣d≠b﹣c,选项A符合题意;
B、∵a+c+2=a+(a+7)+2=2a+9,b+d=a+1+(a+1)=2a+9,
∴a+c+2=b+d,选项B不符合题意;
C、∵a+b+14=a+(a+1)+14=2a+15,c+d=a+7+(a+1)=2a+15,
∴a+b+14=c+d,选项C不符合题意;
D、∵a+d=a+(a+1)=2a+1,b+c=a+1+(a+7)=2a+1,
∴a+d=b+c,选项D不符合题意.
故选:A.
【点睛】
考查了列代数式,利用含a的代数式表示出b,c,d是解题的关键.
2、B
【解析】
分析:直接利用圆锥的性质求出圆锥的半径,进而利用勾股定理得出圆锥的高.
详解:由题意可得圆锥的母线长为:24cm,
设圆锥底面圆的半径为:r,则2πr=,
解得:r=10,
故这个圆锥的高为:(cm).
故选B.
点睛:此题主要考查了圆锥的计算,正确得出圆锥的半径是解题关键.
3、A
【解析】
作CD⊥x轴于D,作AE⊥x轴于E,作BF⊥AE于F,由AAS证明△AOE≌△OCD,得出AE=OD,OE=CD,由点A的坐标是(﹣3,1),得出OE=3,AE=1,∴OD=1,CD=3,得出C(1,3),同理:△AOE≌△BAF,得出AE=BF=1,OE﹣BF=3﹣1=2,得出B(﹣2,4)即可.
【详解】
解:如图所示:作CD⊥x轴于D,作AE⊥x轴于E,作BF⊥AE于F,则∠AEO=∠ODC=∠BFA=90°,∴∠OAE+∠AOE=90°.
∵四边形OABC是正方形,∴OA=CO=BA,∠AOC=90°,∴∠AOE+∠COD=90°,∴∠OAE=∠COD.在△AOE和△OCD中,∵,∴△AOE≌△OCD(AAS),∴AE=OD,OE=CD.
∵点A的坐标是(﹣3,1),∴OE=3,AE=1,∴OD=1,CD=3,∴C(1,3).
同理:△AOE≌△BAF,∴AE=BF=1,OE﹣BF=3﹣1=2,∴B(﹣2,4).
故选A.
【点睛】
本题考查了正方形的性质、全等三角形的判定与性质、坐标与图形性质;熟练掌握正方形的性质,证明三角形全等是解决问题的关键.
4、C
【解析】
根据倒数的定义即可求解.
【详解】
的倒数等于它本身,故符合题意.
故选:.
【点睛】
主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.
5、C
【解析】
∵二次函数的图象经过点(﹣1,0),∴方程一定有一个解为:x=﹣1,∵抛物线的对称轴为:直线x=1,∴二次函数的图象与x轴的另一个交点为:(3,0),∴方程的解为:,.
故选C.
考点:抛物线与x轴的交点.
6、C
【解析】
众数,中位数,方差等概念分析即可.
【详解】
A、中奖是偶然现象,买再多也不一定中奖,故是错误的;
B、全国中学生人口多,只需抽样调查就行了,故是错误的;
C、这组数据的众数和中位数都是8,故是正确的;
D、方差越小越稳定,甲组数据更稳定,故是错误.故选C.
【点睛】
考核知识点:众数,中位数,方差.
7、C
【解析】
试题分析:①4是腰长时,三角形的三边分别为4、4、4,∵4+4=4,∴不能组成三角形,
②4是底边时,三角形的三边分别为4、4、4,能组成三角形,周长=4+4+4=4,
综上所述,它的周长是4.故选C.
考点:4.等腰三角形的性质;4.三角形三边关系;4.分类讨论.
8、B
【解析】
试题分析:
①、MN=AB,所以MN的长度不变;
②、周长C△PAB=(AB+PA+PB),变化;
③、面积S△PMN=S△PAB=×AB·h,其中h为直线l与AB之间的距离,不变;
④、直线NM与AB之间的距离等于直线l与AB之间的距离的一半,所以不变;
⑤、画出几个具体位置,观察图形,可知∠APB的大小在变化.
故选B
考点:动点问题,平行线间的距离处处相等,三角形的中位线
9、D
【解析】
分析:根据反比例函数的性质一一判断即可;
详解:A.若点(3,6)在其图象上,则(﹣3,6)不在其图象上,故本选项不符合题意;
B.当k>0时,y随x的增大而减小,错误,应该是当k>0时,在每个象限,y随x的增大而减小;故本选项不符合题意;
C.错误,应该是过图象上任一点P作x轴、y轴的线,垂足分别A、B,则矩形OAPB的面积为|k|;故本选项不符合题意;
D.正确,本选项符合题意.
故选D.
点睛:本题考查了反比例函数的性质,解题的关键是熟练掌握反比例函数的性质,灵活运用所学知识解决问题,属于中考常考题型.
10、A
【解析】
根据两数相乘,同号得正,异号得负,再把绝对值相乘计算即可.
【详解】
.
故选A.
【点睛】
本题考查了有理数的乘法计算,解答本题的关键是熟练掌握有理数的乘法法则.
11、D
【解析】
因客户的要求每天的工作效率应该为:(48+x)件,所用的时间为:,
根据“因客户要求提前5天交货”,用原有完成时间减去提前完成时间,
可以列出方程:.
故选D.
12、A
【解析】
分析:根据三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得结论.
详解:
由折叠得:∠A=∠A',
∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',
∵∠A=α,∠CEA′=β,∠BDA'=γ,
∴∠BDA'=γ=α+α+β=2α+β,
故选A.
点睛:本题考查了三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、1
【解析】
连接OB,由矩形的性质和已知条件得出△OBD的面积=△OBE的面积=四边形ODBE的面积,再求出△OCE的面积为2,即可得出k的值.
【详解】
连接OB,如图所示:
∵四边形OABC是矩形,
∴∠OAD=∠OCE=∠DBE=90°,△OAB的面积=△OBC的面积,
∵D、E在反比例函数y=(x>0)的图象上,
∴△OAD的面积=△OCE的面积,
∴△OBD的面积=△OBE的面积=四边形ODBE的面积=1,
∵BE=2EC,
∴△OCE的面积=△OBE的面积=2,
∴k=1.
故答案为:1.
【点睛】
本题考查了反比例函数的系数k的几何意义:在反比例函数y=xk图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是 |k|,且保持不变.
14、(1,0);(﹣5,﹣2).
【解析】
本题主要考查位似变换中对应点的坐标的变化规律.因而本题应分两种情况讨论,一种是当E和C是对应顶点,G和A是对应顶点;另一种是A和E是对应顶点,C和G是对应顶点.
【详解】
∵正方形ABCD和正方形OEFG中A和点F的坐标分别为(3,2),(-1,-1),
∴E(-1,0)、G(0,-1)、D(5,2)、B(3,0)、C(5,0),
(1)当E和C是对应顶点,G和A是对应顶点时,位似中心就是EC与AG的交点,
设AG所在直线的解析式为y=kx+b(k≠0),
∴,解得.
∴此函数的解析式为y=x-1,与EC的交点坐标是(1,0);
(2)当A和E是对应顶点,C和G是对应顶点时,位似中心就是AE与CG的交点,
设AE所在直线的解析式为y=kx+b(k≠0),
,解得,
故此一次函数的解析式为…①,
同理,设CG所在直线的解析式为y=kx+b(k≠0),
,解得,
故此直线的解析式为…②
联立①②得
解得,故AE与CG的交点坐标是(-5,-2).
故答案为:(1,0)、(-5,-2).
15、x+x=75.
【解析】
试题解析:设长方形墙砖的长为x厘米,
可得:x+x=75.
16、5π
【解析】
根据旋转的性质可以得到阴影部分的面积=扇形OAB的面积﹣扇形OCD的面积,利用扇形的面积公式计算即可求解.
【详解】
∵△AOC≌△BOD,∴阴影部分的面积=扇形OAB的面积﹣扇形OCD的面积5π.
故答案为:5π.
【点睛】
本题考查了旋转的性质以及扇形的面积公式,正确理解:阴影部分的面积=扇形OAB的面积﹣扇形OCD的面积是解题的关键.
17、3 4
【解析】
先找到与11相邻的平方数9和16,求出算术平方根即可解题.
【详解】
解:∵,
∴,
∴无理数在连续整数3与4之间.
【点睛】
本题考查了无理数的估值,属于简单题,熟记平方数是解题关键.
18、
【解析】
根据列表法求出所有可能及可得出挑选的两位教师恰好是一男一女的结果数而利用概率公式计算可得.
【详解】
解:所有可能的结果如下表:
男1
男2
女1
女2
男1
(男1,男2)
(男1,女1)
(男1,女2)
男2
(男2,男1)
(男2,女1)
(男2,女2)
女1
(女1,男1)
(女1,男2)
(女1,女2)
女2
(女2,男1)
(女2,男2)
(女2,女1)
由表可知总共有12种结果,每种结果出现的可能性相同.挑选的两位教师恰好是一男一女的结果有8种,
所以其概率为挑选的两位教师恰好是一男一女的概率为=,
故答案为.
【点睛】
本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1);(2).
【解析】
分析:(1)过点D作DH⊥AB,根据角平分线的性质得到DH=DC根据正弦的定义列出方程,解方程即可;
(2)根据三角形的面积公式计算.
详解:(1)过点D作DH⊥AB,垂足为点H.∵BD平分∠ABC,∠C=90°,∴DH=DC=x,则AD=3﹣x.∵∠C=90°,AC=3,BC=4,∴AB=1.
∵,即CD=;
(2).
∵BD=2DE,∴.
点睛:本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.
20、①③④.
【解析】
试题分析:∵x=﹣1时y=﹣1,x=1时,y=3,x=1时,y=5,∴,
解得,∴y=﹣x2+3x+3,∴ac=﹣1×3=﹣3<1,故①正确;
对称轴为直线,所以,当x>时,y的值随x值的增大而减小,故②错误;
方程为﹣x2+2x+3=1,整理得,x2﹣2x﹣3=1,解得x1=﹣1,x2=3,
所以,3是方程ax2+(b﹣1)x+c=1的一个根,正确,故③正确;
﹣1<x<3时,ax2+(b﹣1)x+c>1正确,故④正确;
综上所述,结论正确的是①③④.
故答案为①③④.
【考点】二次函数的性质.
21、(1)50;4;5;画图见解析;(2)144°;(3)64
【解析】
(1)根据统计图可知,课外阅读达3小时的共10人,占总人数的20%,由此可得出总人数;求出课外阅读时间4小时与6小时男生的人数,再根据中位数与众数的定义即可得出结论;根据求出的人数补全条形统计图即可;
(2)求出课外阅读时间为5小时的人数,再求出其人数与总人数的比值即可得出扇形的圆心角度数;
(3)求出总人数与课外阅读时间为6小时的学生人数的百分比的积即可.
【详解】
解:(1)∵课外阅读达3小时的共10人,占总人数的20%,
∴=50(人).
∵课外阅读4小时的人数是32%,
∴50×32%=16(人),
∴男生人数=16﹣8=8(人);
∴课外阅读6小时的人数=50﹣6﹣4﹣8﹣8﹣8﹣12﹣3=1(人),
∴课外阅读3小时的是10人,4小时的是16人,5小时的是20人,6小时的是4人,
∴中位数是4小时,众数是5小时.
补全图形如图所示.
故答案为50,4,5;
(2)∵课外阅读5小时的人数是20人,
∴×360°=144°.
故答案为144°;
(3)∵课外阅读6小时的人数是4人,
∴800×=64(人).
答:九年级一周课外阅读时间为6小时的学生大约有64人.
【点睛】
本题考查了统计图与中位数、众数的知识点,解题的关键是熟练的掌握中位数与众数的定义与根据题意作图.
22、(1)打折前甲品牌粽子每盒70元,乙品牌粽子每盒80元.(2)打折后购买这批粽子比不打折节省了3120元.
【解析】
分析:(1)设打折前甲品牌粽子每盒x元,乙品牌粽子每盒y元,根据“打折前,买6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;
(2)根据节省钱数=原价购买所需钱数-打折后购买所需钱数,即可求出节省的钱数.
详解:(1)设打折前甲品牌粽子每盒x元,乙品牌粽子每盒y元,
根据题意得:
,
解得:.
答:打折前甲品牌粽子每盒40元,乙品牌粽子每盒120元.
(2)80×40+100×120-80×0.8×40-100×0.75×120=3640(元).
答:打折后购买这批粽子比不打折节省了3640元.
点睛:本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据数量关系,列式计算.
23、凉亭P到公路l的距离为273.2m.
【解析】
分析:作PD⊥AB于D,构造出Rt△APD与Rt△BPD,根据AB的长度.利用特殊角的三角函数值求解.
【详解】
详解:作PD⊥AB于D.
设BD=x,则AD=x+1.
∵∠EAP=60°,
∴∠PAB=90°﹣60°=30°.
在Rt△BPD中,
∵∠FBP=45°,
∴∠PBD=∠BPD=45°,
∴PD=DB=x.
在Rt△APD中,
∵∠PAB=30°,
∴PD=tan30°•AD,
即DB=PD=tan30°•AD=x=(1+x),
解得:x≈273.2,
∴PD=273.2.
答:凉亭P到公路l的距离为273.2m.
【点睛】
此题考查的是直角三角形的性质,解答此题的关键是构造出两个特殊角度的直角三角形,再利用特殊角的三角函数值解答.
24、(1)y=﹣x2+2x+3;(2)d=﹣t2+4t﹣3;(3)P(,).
【解析】
(1)由抛物线y=ax2+bx+3与y轴交于点A,可求得点A的坐标,又OA=OC,可求得点C的坐标,然后分别代入B,C的坐标求出a,b,即可求得二次函数的解析式;
(2)首先延长PE交x轴于点H,现将解析式换为顶点解析式求得D(1,4),设直线CD的解析式为y=kx+b,再将点C(3,0)、D(1,4)代入,得y=﹣2x+6,则E(t,﹣2t+6),P(t,﹣t2+2t+3),PH=﹣t2+2t+3,EH=﹣2t+6,再根据d=PH﹣EH即可得答案;
(3)首先,作DK⊥OC于点K,作QM∥x轴交DK于点T,延长PE、EP交OC于H、交QM于M,作ER⊥DK于点R,记QE与DK的交点为N,根据题意在(2)的条件下先证明△DQT≌△ECH,再根据全等三角形的性质即可得ME=4﹣2(﹣2t+6),QM= t﹣1+(3﹣t),即可求得答案.
【详解】
解:(1)当x=0时,y=3,
∴A(0,3)即OA=3,
∵OA=OC,
∴OC=3,
∴C(3,0),
∵抛物线y=ax2+bx+3经过点B(﹣1,0),C(3,0)
∴,
解得:,
∴抛物线的解析式为:y=﹣x2+2x+3;
(2)如图1,延长PE交x轴于点H,
∵y=﹣x2+2x+3=﹣(x﹣1)2+4,
∴D(1,4),
设直线CD的解析式为y=kx+b,
将点C(3,0)、D(1,4)代入,得: ,
解得:,
∴y=﹣2x+6,
∴E(t,﹣2t+6),P(t,﹣t2+2t+3),
∴PH=﹣t2+2t+3,EH=﹣2t+6,
∴d=PH﹣EH=﹣t2+2t+3﹣(﹣2t+6)=﹣t2+4t﹣3;
(3)如图2,作DK⊥OC于点K,作QM∥x轴交DK于点T,延长PE、EP交OC于H、交QM于M,作ER⊥DK于点R,记QE与DK的交点为N,
∵D(1,4),B(﹣1,0),C(3,0),
∴BK=2,KC=2,
∴DK垂直平分BC,
∴BD=CD,
∴∠BDK=∠CDK,
∵∠BQE=∠QDE+∠DEQ,∠BQE+∠DEQ=90°,
∴∠QDE+∠DEQ+∠DEQ=90°,即2∠CDK+2∠DEQ=90°,
∴∠CDK+∠DEQ=45°,即∠RNE=45°,
∵ER⊥DK,
∴∠NER=45°,
∴∠MEQ=∠MQE=45°,
∴QM=ME,
∵DQ=CE,∠DTQ=∠EHC、∠QDT=∠CEH,
∴△DQT≌△ECH,
∴DT=EH,QT=CH,
∴ME=4﹣2(﹣2t+6),
QM=MT+QT=MT+CH=t﹣1+(3﹣t),
4﹣2(﹣2t+6)=t﹣1+(3﹣t),
解得:t=,
∴P(,).
【点睛】
本题考查了二次函数的综合题,解题的关键是熟练的掌握二次函数的相关知识点.
25、(1)反比例函数的解析式为y=﹣;(2)D(﹣2,);﹣2<x<0或x>3;(3)P(4,0).
【解析】
试题分析:(1)把点B(3,﹣1)带入反比例函数中,即可求得k的值;
(2)联立直线和反比例函数的解析式构成方程组,化简为一个一元二次方程,解方程即可得到点D坐标,观察图象可得相应x的取值范围;
(3)把A(1,a)是反比例函数的解析式,求得a的值,可得点A坐标,用待定系数法求得直线AB的解析式,令y=0,解得x的值,即可求得点P的坐标.
试题解析:(1)∵B(3,﹣1)在反比例函数的图象上,
∴-1=,
∴m=-3,
∴反比例函数的解析式为;
(2),
∴=,
x2-x-6=0,
(x-3)(x+2)=0,
x1=3,x2=-2,
当x=-2时,y=,
∴D(-2,);
y1>y2时x的取值范围是-2
相关试卷
这是一份2023年北京五十七中中考数学二模试卷(含解析 ),共8页。
这是一份江西省上饶上饶县联考2022年中考联考数学试题含解析,共16页。试卷主要包含了计算6m6÷,sin45°的值等于,下列命题是真命题的是等内容,欢迎下载使用。
这是一份江西省上饶市上饶县达标名校2021-2022学年中考数学模拟试题含解析,共23页。