年终活动
搜索
    上传资料 赚现金

    辽宁省本溪市名山区重点名校2022年中考数学模试卷含解析

    辽宁省本溪市名山区重点名校2022年中考数学模试卷含解析第1页
    辽宁省本溪市名山区重点名校2022年中考数学模试卷含解析第2页
    辽宁省本溪市名山区重点名校2022年中考数学模试卷含解析第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    辽宁省本溪市名山区重点名校2022年中考数学模试卷含解析

    展开

    这是一份辽宁省本溪市名山区重点名校2022年中考数学模试卷含解析,共25页。试卷主要包含了答题时请按要求用笔,下列事件中,属于不确定事件的是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是(  )

    A.13=3+10 B.25=9+16 C.36=15+21 D.49=18+31
    2.多项式4a﹣a3分解因式的结果是(  )
    A.a(4﹣a2) B.a(2﹣a)(2+a) C.a(a﹣2)(a+2) D.a(2﹣a)2
    3.如图:将一个矩形纸片,沿着折叠,使点分别落在点处.若,则的度数为( )

    A. B. C. D.
    4.如图,以正方形ABCD的边CD为边向正方形ABCD外作等边△CDE,AC与BE交于点F,则∠AFE的度数是(  )

    A.135° B.120° C.60° D.45°
    5.已知二次函数y=x2﹣4x+m的图象与x轴交于A、B两点,且点A的坐标为(1,0),则线段AB的长为(  )
    A.1 B.2 C.3 D.4
    6.下列事件中,属于不确定事件的是(   )
    A.科学实验,前100次实验都失败了,第101次实验会成功
    B.投掷一枚骰子,朝上面出现的点数是7点
    C.太阳从西边升起来了
    D.用长度分别是3cm,4cm,5cm的细木条首尾顺次相连可组成一个直角三角形
    7.对于有理数x、y定义一种运算“”:,其中a、b、c为常数,等式右边是通常的加法与乘法运算,已知,,则的值为(  )
    A.-1 B.-11 C.1 D.11
    8.如图,在边长为的等边三角形ABC中,过点C垂直于BC的直线交∠ABC的平分线于点P,则点P到边AB所在直线的距离为( )

    A. B. C. D.1
    9.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1,图2所示,图中各行从左到右列出的算筹数分别表示未知数x,y的系数与相应的常数项.把图1表示的算筹图用我们现在所熟悉的方程组形式表述出来,就是.类似地,图2所示的算筹图我们可以表述为(  )

    A. B. C. D.
    10.郑州某中学在备考2018河南中考体育的过程中抽取该校九年级20名男生进行立定跳远测试,以便知道下一阶段的体育训练,成绩如下所示:
    成绩(单位:米)
    2.10
    2.20
    2.25
    2.30
    2.35
    2.40
    2.45
    2.50
    人数
    2
    3
    2
    4
    5
    2
    1
    1
    则下列叙述正确的是(  )
    A.这些运动员成绩的众数是 5
    B.这些运动员成绩的中位数是 2.30
    C.这些运动员的平均成绩是 2.25
    D.这些运动员成绩的方差是 0.0725
    11.如图已知⊙O的内接五边形ABCDE,连接BE、CE,若AB=BC=CE,∠EDC=130°,则∠ABE的度数为(  )

    A.25° B.30° C.35° D.40°
    12.若代数式有意义,则实数x的取值范围是(  )
    A.x=0 B.x=3 C.x≠0 D.x≠3
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.把多项式9x3﹣x分解因式的结果是_____.
    14.若关于x的方程(k﹣1)x2﹣4x﹣5=0有实数根,则k的取值范围是_____.
    15.如图,等腰三角形ABC的底边BC长为4,面积是12,腰AB的垂直平分线EF分别交AB,AC于点E、F,若点D为底边BC的中点,点M为线段EF上一动点,则△BDM的周长的最小值为_____.

    16.若式子有意义,则x的取值范围是   .
    17.某校广播台要招聘一批小主持人,对A、B两名小主持人进行了专业素质、创新能力、外语水平和应变能力进行了测试,他们各项的成绩(百分制)如表所示:
    应聘者
    专业素质
    创新能力
    外语水平
    应变能力
    A
    73
    85
    78
    85
    B
    81
    82
    80
    75
    如果只招一名主持人,该选用______;依据是_____.(答案不唯一,理由支撑选项即可)
    18.如图,直线经过正方形的顶点分别过此正方形的顶点、作于点、 于点.若,则的长为________.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分).
    20.(6分)如图,建筑物AB的高为6cm,在其正东方向有个通信塔CD,在它们之间的地面点M(B,M,D三点在一条直线上)处测得建筑物顶端A、塔项C的仰角分别为37°和60°,在A处测得塔顶C的仰角为30°,则通信塔CD的高度.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,=1.73,精确到0.1m)

    21.(6分)有A、B两组卡片共1张,A组的三张分别写有数字2,4,6,B组的两张分别写有3,1.它们除了数字外没有任何区别,随机从A组抽取一张,求抽到数字为2的概率;随机地分别从A组、B组各抽取一张,请你用列表或画树状图的方法表示所有等可能的结果.现制定这样一个游戏规则:若选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么?
    22.(8分) “垃圾不落地,城市更美丽”.某中学为了了解七年级学生对这一倡议的落实情况,学校安排政教处在七年级学生中随机抽取了部分学生,并针对学生“是否随手丢垃圾”这一情况进行了问卷调查,统计结果为:A为从不随手丢垃圾;B为偶尔随手丢垃圾;C为经常随手丢垃圾三项.要求每位被调查的学生必须从以上三项中选一项且只能选一项.现将调查结果绘制成以下来不辜负不完整的统计图.

    请你根据以上信息,解答下列问题:
    (1)补全上面的条形统计图和扇形统计图;
    (2)所抽取学生“是否随手丢垃圾”情况的众数是   ;
    (3)若该校七年级共有1500名学生,请你估计该年级学生中“经常随手丢垃圾”的学生约有多少人?谈谈你的看法?
    23.(8分)如图1,点为正的边上一点(不与点重合),点分别在边上,且.
    (1)求证:;
    (2)设,的面积为,的面积为,求(用含的式子表示);
    (3)如图2,若点为边的中点,求证: .

    图1 图2
    24.(10分)如图,在中,,是角平分线,平分交于点,经过两点的交于点,交于点,恰为的直径.
    求证:与相切;当时,求的半径.
    25.(10分)如图1,2分别是某款篮球架的实物图与示意图,已知底座BC=0.60米,底座BC与支架AC所成的角∠ACB=75°,支架AF的长为2.50米米,篮板顶端F点到篮框D的距离FD=1.35米,篮板底部支架HF与支架AF所成的角∠FHE=60°,求篮框D到地面的距离(精确到0.01米).
    (参考数据:cos75°≈0.2588, sin75°≈0.9659,tan75°≈3.732,,)

    26.(12分)列方程解应用题:
    为宣传社会主义核心价值观,某社区居委会计划制作1200个大小相同的宣传栏.现有甲、乙两个广告公司都具备制作能力,居委会派出相关人员分别到这两个广告公司了解情况,获得如下信息:
    信息一:甲公司单独制作完成这批宣传栏比乙公司单独制作完成这批宣传栏多用10天;
    信息二:乙公司每天制作的数量是甲公司每天制作数量的1.2倍.
    根据以上信息,求甲、乙两个广告公司每天分别能制作多少个宣传栏?
    27.(12分)如图,在平面直角坐标系中,直线经过点和,双曲线经过点B.
    (1)求直线和双曲线的函数表达式;
    (2)点C从点A出发,沿过点A与y轴平行的直线向下运动,速度为每秒1个单位长度,点C的运动时间为t(0<t<12),连接BC,作BD⊥BC交x轴于点D,连接CD,
    ①当点C在双曲线上时,求t的值;
    ②在0<t<6范围内,∠BCD的大小如果发生变化,求tan∠BCD的变化范围;如果不发生变化,求tan∠BCD的值;
    ③当时,请直接写出t的值.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    本题考查探究、归纳的数学思想方法.题中明确指出:任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.由于“正方形数”为两个“三角形数”之和,正方形数可以用代数式表示为:(n+1)2,两个三角形数分别表示为n(n+1)和(n+1)(n+2),所以由正方形数可以推得n的值,然后求得三角形数的值.
    【详解】
    ∵A中13不是“正方形数”;选项B、D中等式右侧并不是两个相邻“三角形数”之和.
    故选:C.
    【点睛】
    此题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.
    2、B
    【解析】
    首先提取公因式a,再利用平方差公式分解因式得出答案.
    【详解】
    4a﹣a3=a(4﹣a2)=a(2﹣a)(2+a).
    故选:B.
    【点睛】
    此题主要考查了提取公因式法以及公式法分解因式,正确运用公式是解题关键.
    3、B
    【解析】
    根据折叠前后对应角相等可知.
    解:设∠ABE=x,
    根据折叠前后角相等可知,∠C1BE=∠CBE=50°+x,
    所以50°+x+x=90°,
    解得x=20°.
    故选B.
    “点睛”本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.
    4、B
    【解析】
    易得△ABF与△ADF全等,∠AFD=∠AFB,因此只要求出∠AFB的度数即可.
    【详解】
    ∵四边形ABCD是正方形,
    ∴AB=AD,∠BAF=∠DAF,
    ∴△ABF≌△ADF,
    ∴∠AFD=∠AFB,
    ∵CB=CE,
    ∴∠CBE=∠CEB,
    ∵∠BCE=∠BCD+∠DCE=90°+60°=150°,
    ∴∠CBE=15°,
    ∵∠ACB=45°,
    ∴∠AFB=∠ACB+∠CBE=60°.
    ∴∠AFE=120°.
    故选B.
    【点睛】
    此题考查正方形的性质,熟练掌握正方形及等边三角形的性质,会运用其性质进行一些简单的转化.
    5、B
    【解析】
    先将点A(1,0)代入y=x2﹣4x+m,求出m的值,将点A(1,0)代入y=x2﹣4x+m,得到x1+x2=4,x1•x2=3,即可解答
    【详解】
    将点A(1,0)代入y=x2﹣4x+m,
    得到m=3,
    所以y=x2﹣4x+3,与x轴交于两点,
    设A(x1,y1),b(x2,y2)
    ∴x2﹣4x+3=0有两个不等的实数根,
    ∴x1+x2=4,x1•x2=3,
    ∴AB=|x1﹣x2|= =2;
    故选B.
    【点睛】
    此题考查抛物线与坐标轴的交点,解题关键在于将已知点代入.
    6、A
    【解析】
    根据事件发生的可能性大小判断相应事件的类型即可.
    【详解】
    解:A、是随机事件,故A符合题意;
    B、是不可能事件,故B不符合题意;
    C、是不可能事件,故C不符合题意;
    D、是必然事件,故D不符合题意;
    故选A.
    【点睛】
    本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的
    概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不
    发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
    7、B
    【解析】
    先由运算的定义,写出3△5=25,4△7=28,得到关于a、b、c的方程组,用含c的代数式表示出a、b.代入2△2求出值.
    【详解】
    由规定的运算,3△5=3a+5b+c=25,4a+7b+c=28
    所以
    解这个方程组,得
    所以2△2=a+b+c=-35-2c+24+c+c=-2.
    故选B.
    【点睛】
    本题考查了新运算、三元一次方程组的解法.解决本题的关键是根据新运算的意义,正确的写出3△5=25,4△7=28,2△2.
    8、D
    【解析】
    试题分析:∵△ABC为等边三角形,BP平分∠ABC,∴∠PBC=∠ABC=30°,∵PC⊥BC,∴∠PCB=90°,在Rt△PCB中,PC=BC•tan∠PBC==1,∴点P到边AB所在直线的距离为1,故选D.
    考点:1.角平分线的性质;2.等边三角形的性质;3.含30度角的直角三角形;4.勾股定理.
    9、A
    【解析】
    根据图形,结合题目所给的运算法则列出方程组.
    【详解】
    图2所示的算筹图我们可以表述为:.
    故选A.
    【点睛】
    本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程组.
    10、B
    【解析】
    根据方差、平均数、中位数和众数的计算公式和定义分别对每一项进行分析,即可得出答案.
    【详解】
    由表格中数据可得:
    A、这些运动员成绩的众数是2.35,错误;
    B、这些运动员成绩的中位数是2.30,正确;
    C、这些运动员的平均成绩是 2.30,错误;
    D、这些运动员成绩的方差不是0.0725,错误;
    故选B.
    【点睛】
    考查了方差、平均数、中位数和众数,熟练掌握定义和计算公式是本题的关键,平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.
    11、B
    【解析】
    如图,连接OA,OB,OC,OE.想办法求出∠AOE即可解决问题.
    【详解】
    如图,连接OA,OB,OC,OE.

    ∵∠EBC+∠EDC=180°,∠EDC=130°,
    ∴∠EBC=50°,
    ∴∠EOC=2∠EBC=100°,
    ∵AB=BC=CE,
    ∴弧AB=弧BC=弧CE,
    ∴∠AOB=∠BOC=∠EOC=100°,
    ∴∠AOE=360°﹣3×100°=60°,
    ∴∠ABE=∠AOE=30°.
    故选:B.
    【点睛】
    本题考查圆周角定理,圆心角,弧,弦之间的关系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
    12、D
    【解析】
    分析:根据分式有意义的条件进行求解即可.
    详解:由题意得,x﹣3≠0,
    解得,x≠3,
    故选D.
    点睛:此题考查了分式有意义的条件.注意:分式有意义的条件事分母不等于零,分式无意义的条件是分母等于零.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、x(3x+1)(3x﹣1)
    【解析】
    提取公因式分解多项式,再根据平方差公式分解因式,从而得到答案.
    【详解】
    9x3-x=x(9x2-1)=x(3x+1)(3x-1),故答案为x(3x+1)(3x-1).
    【点睛】
    本题主要考查了因式分解以及平方差公式,解本题的要点在于熟知多项式分解因式的相关方法.
    14、
    【解析】
    当k−1=0,即k=1时,原方程为−4x−5=0,
    解得:x=−,
    ∴k=1符合题意;
    当k−1≠0,即k≠1时,有,
    解得:k⩾且k≠1.
    综上可得:k的取值范围为k⩾.
    故答案为k⩾.
    15、2
    【解析】
    连接AD交EF与点M′,连结AM,由线段垂直平分线的性质可知AM=MB,则BM+DM=AM+DM,故此当A、M、D在一条直线上时,MB+DM有最小值,然后依据要三角形三线合一的性质可证明AD为△ABC底边上的高线,依据三角形的面积为12可求得AD的长.
    【详解】
    解:连接AD交EF与点M′,连结AM.

    ∵△ABC是等腰三角形,点D是BC边的中点,
    ∴AD⊥BC,
    ∴S△ABC=BC•AD=×4×AD=12,解得AD=1,
    ∵EF是线段AB的垂直平分线,
    ∴AM=BM.
    ∴BM+MD=MD+AM.
    ∴当点M位于点M′处时,MB+MD有最小值,最小值1.
    ∴△BDM的周长的最小值为DB+AD=2+1=2.
    【点睛】
    本题考查三角形的周长最值问题,结合等腰三角形的性质、垂直平分线的性质以及中点的相关属性进行分析.
    16、且
    【解析】
    ∵式子在实数范围内有意义,
    ∴x+1≥0,且x≠0,
    解得:x≥-1且x≠0.
    故答案为x≥-1且x≠0.
    17、A A的平均成绩高于B平均成绩
    【解析】
    根据表格求出A,B的平均成绩,比较大小即可解题.
    【详解】
    解:A的平均数是80.25,B的平均数是79.5,
    ∴A比B更优秀,
    ∴如果只招一名主持人,该选用A;依据是A的平均成绩高于B平均成绩.
    【点睛】
    本题考查了平均数的实际应用,属于简单题,从表格中找到有用信息是解题关键.
    18、13
    【解析】
    根据正方形的性质得出AD=AB,∠BAD=90°,根据垂直得出∠DEA=∠AFB=90°,求出∠EDA=∠FAB,根据AAS推出△AED≌△BFA,根据全等三角形的性质得出AE=BF=5,AF=DE=8,即可求出答案;
    【详解】
    ∵ABCD是正方形(已知),
    ∴AB=AD,∠ABC=∠BAD=90°;
    又∵∠FAB+∠FBA=∠FAB+∠EAD=90°,
    ∴∠FBA=∠EAD(等量代换);
    ∵BF⊥a于点F,DE⊥a于点E,
    ∴在Rt△AFB和Rt△AED中,
    ∵,
    ∴△AFB≌△AED(AAS),
    ∴AF=DE=8,BF=AE=5(全等三角形的对应边相等),
    ∴EF=AF+AE=DE+BF=8+5=13.
    故答案为13.
    点睛:本题考查了勾股定理,全等三角形的性质和判定,正方形的性质的应用,能求出△AED≌△BFA是解此题的关键.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、5﹣.
    【解析】
    根据特殊角的三角函数值进行计算即可.
    【详解】
    原式=
    =3﹣+4﹣2
    =5﹣.
    【点睛】
    本题考查了特殊角的三角函数值,是基础题目比较简单.
    20、通信塔CD的高度约为15.9cm.
    【解析】
    过点A作AE⊥CD于E,设CE=xm,解直角三角形求出AE,解直角三角形求出BM、DM,即可得出关于x的方程,求出方程的解即可.
    【详解】
    过点A作AE⊥CD于E,

    则四边形ABDE是矩形,
    设CE=xcm,
    在Rt△AEC中,∠AEC=90°,∠CAE=30°,
    所以AE=xcm,
    在Rt△CDM中,CD=CE+DE=CE+AB=(x+6)cm,
    DM=cm,
    在Rt△ABM中,BM=cm,
    ∵AE=BD,
    ∴,
    解得:x=+3,
    ∴CD=CE+ED=+9≈15.9(cm),
    答:通信塔CD的高度约为15.9cm.
    【点睛】
    本题考查了解直角三角形,能通过解直角三角形求出AE、BM的长度是解此题的关键.
    21、(1)P(抽到数字为2)=;(2)不公平,理由见解析.
    【解析】
    试题分析:(1)根据概率的定义列式即可;(2)画出树状图,然后根据概率的意义分别求出甲、乙获胜的概率,从而得解.
    试题解析: (1)P=;
    (2)由题意画出树状图如下:

    一共有6种情况,
    甲获胜的情况有4种,P=,
    乙获胜的情况有2种,P=,
    所以,这样的游戏规则对甲乙双方不公平.
    考点:游戏公平性;列表法与树状图法.
    22、 (1)补全图形见解析;(2)B;(3)估计该年级学生中“经常随手丢垃圾”的学生约有75人,就该年级经常随手丢垃圾的学生人数看出仍需要加强公共卫生教育、宣传和监督.
    【解析】
    (1)根据被调查的总人数求出C情况的人数与B情况人数所占比例即可;
    (2)根据众数的定义求解即可;
    (3)该年级学生中“经常随手丢垃圾”的学生=总人数×C情况的比值.
    【详解】
    (1)∵被调查的总人数为60÷30%=200人,
    ∴C情况的人数为200﹣(60+130)=10人,B情况人数所占比例为×100%=65%,
    补全图形如下:

    (2)由条形图知,B情况出现次数最多,
    所以众数为B,
    故答案为B.
    (3)1500×5%=75,
    答:估计该年级学生中“经常随手丢垃圾”的学生约有75人,就该年级经常随手丢垃圾的学生人数看出仍需要加强公共卫生教育、宣传和监督.
    【点睛】
    本题考查了众数与扇形统计图与条形统计图,解题的关键是熟练的掌握众数与扇形统计图与条形统计图的相关知识点.
    23、(1)详见解析;(1)详见解析;(3)详见解析.
    【解析】
    (1)根据两角对应相等的两个三角形相似即可判断;
    (1)如图1中,分别过E,F作EG⊥BC于G,FH⊥BC于H,S1=•BD•EG=•BD•EG=•a•BE•sin60°=•a•BE,S1=•CD•FH=•b•CF,可得S1•S1=ab•BE•CF,由(1)得△BDE∽△CFD,,即BE•FC=BD•CD=ab,即可推出S1•S1=a1b1;
    (3)想办法证明△DFE∽△CFD,推出,即DF1=EF•FC;
    【详解】
    (1)证明:如图1中,

    在△BDE中,∠BDE+∠DEB+∠B=180°,又∠BDE+∠EDF+∠FDC=180°,
    ∴∠BDE+∠DEB+∠B=∠BDE+∠EDF+∠FDC,
    ∵∠EDF=∠B,
    ∴∠DEB=∠FDC,
    又∠B=∠C,
    ∴△BDE∽△CFD.

    (1)如图1中,分别过E,F作EG⊥BC于G,FH⊥BC于H,

    S1=•BD•EG=•BD•EG=•a•BE•sin60°=•a•BE,S1=•CD•FH=•b•CF,
    ∴S1•S1=ab•BE•CF
    由(1)得△BDE∽△CFD,
    ∴,即BE•FC=BD•CD=ab,
    ∴S1•S1=a1b1.
    (3)由(1)得△BDE∽△CFD,
    ∴,
    又BD=CD,
    ∴,
    又∠EDF=∠C=60°,
    ∴△DFE∽△CFD,
    ∴,即DF1=EF•FC.
    【点睛】
    本题考查了相似形综合题、等边三角形的性质、相似三角形的判定和性质、三角形的面积等知识,解题的关键是正确寻找相似三角形的相似的条件.
    24、 (1)证明见解析;(2).
    【解析】
    (1)连接OM,证明OM∥BE,再结合等腰三角形的性质说明AE⊥BE,进而证明OM⊥AE;
    (2)结合已知求出AB,再证明△AOM∽△ABE,利用相似三角形的性质计算.
    【详解】
    (1)连接OM,则OM=OB,
    ∴∠1=∠2,
    ∵BM平分∠ABC,
    ∴∠1=∠3,
    ∴∠2=∠3,
    ∴OM∥BC,
    ∴∠AMO=∠AEB,
    在△ABC中,AB=AC,AE是角平分线,
    ∴AE⊥BC,
    ∴∠AEB=90°,
    ∴∠AMO=90°,
    ∴OM⊥AE,
    ∵点M在圆O上,
    ∴AE与⊙O相切;

    (2)在△ABC中,AB=AC,AE是角平分线,
    ∴BE=BC,∠ABC=∠C,
    ∵BC=4,cosC=
    ∴BE=2,cos∠ABC=,
    在△ABE中,∠AEB=90°,
    ∴AB==6,
    设⊙O的半径为r,则AO=6-r,
    ∵OM∥BC,
    ∴△AOM∽△ABE,
    ∴∴,
    ∴,
    解得,
    ∴的半径为.
    【点睛】
    本题考查了切线的判定;等腰三角形的性质;相似三角形的判定与性质;解直角三角形等知识,综合性较强,正确添加辅助线,熟练运用相关知识是解题的关键.
    25、3.05米.
    【解析】
    延长FE交CB的延长线于M,过A作AG⊥FM于G,解直角三角形即可得到结论.
    【详解】
    延长FE交CB的延长线于M,过A作AG⊥FM于G,
    在Rt△ABC中,tan∠ACB=,
    ∴AB=BC•tan75°=0.60×3.732=2.2392,
    ∴GM=AB=2.2392,
    在Rt△AGF中,∵∠FAG=∠FHD=60°,sin∠FAG=,
    ∴sin60°=,
    ∴FG=2.165,
    ∴DM=FG+GM﹣DF≈3.05米.
    答:篮框D到地面的距离是3.05米.

    考点:解直角三角形的应用.
    26、甲广告公司每天能制作1个宣传栏,乙广告公司每天能制作2个宣传栏.
    【解析】
    设甲广告公司每天能制作x个宣传栏,则乙广告公司每天能制作1.2x个宣传栏,然后根据“甲公司单独制作完成这批宣传栏比乙公司单独制作完成这批宣传栏多用10天”列出方程求解即可.
    【详解】
    解:设甲广告公司每天能制作x个宣传栏,则乙广告公司每天能制作1.2x个宣传栏.
    根据题意得:
    解得:x=1.
    经检验:x=1是原方程的解且符合实际问题的意义.
    ∴1.2x=1.2×1=2.
    答:甲广告公司每天能制作1个宣传栏,乙广告公司每天能制作2个宣传栏.
    【点睛】
    此题考查了分式方程的应用,找出等量关系为两广告公司的工作时间的差为10天是解题的关键.
    27、(1)直线的表达式为,双曲线的表达式为;(2)①;②当时,的大小不发生变化,的值为;③t的值为或.
    【解析】
    (1)由点利用待定系数法可求出直线的表达式;再由直线的表达式求出点B的坐标,然后利用待定系数法即可求出双曲线的表达式;
    (2)①先求出点C的横坐标,再将其代入双曲线的表达式求出点C的纵坐标,从而即可得出t的值;
    ②如图1(见解析),设直线AB交y轴于M,则,取CD的中点K,连接AK、BK.利用直角三角形的性质证明A、D、B、C四点共圆,再根据圆周角定理可得,从而得出,即可解决问题;
    ③如图2(见解析),过点B作于M,先求出点D与点M重合的临界位置时t的值,据此分和两种情况讨论:根据三点坐标求出的长,再利用三角形相似的判定定理与性质求出DM的长,最后在中,利用勾股定理即可得出答案.
    【详解】
    (1)∵直线经过点和
    ∴将点代入得
    解得
    故直线的表达式为
    将点代入直线的表达式得
    解得

    ∵双曲线经过点
    ,解得
    故双曲线的表达式为;
    (2)①轴,点A的坐标为
    ∴点C的横坐标为12
    将其代入双曲线的表达式得
    ∴C的纵坐标为,即
    由题意得,解得
    故当点C在双曲线上时,t的值为;
    ②当时,的大小不发生变化,求解过程如下:
    若点D与点A重合
    由题意知,点C坐标为
    由两点距离公式得:


    由勾股定理得,即
    解得
    因此,在范围内,点D与点A不重合,且在点A左侧
    如图1,设直线AB交y轴于M,取CD的中点K,连接AK、BK
    由(1)知,直线AB的表达式为
    令得,则,即
    点K为CD的中点,
    (直角三角形中,斜边上的中线等于斜边的一半)
    同理可得:

    A、D、B、C四点共圆,点K为圆心
    (圆周角定理)


    ③过点B作于M
    由题意和②可知,点D在点A左侧,与点M重合是一个临界位置
    此时,四边形ACBD是矩形,则,即
    因此,分以下2种情况讨论:
    如图2,当时,过点C作于N







    ,即


    由勾股定理得

    解得或(不符题设,舍去)
    当时,同理可得:
    解得或(不符题设,舍去)
    综上所述,t的值为或.

    【点睛】
    本题考查反比例函数综合题、锐角三角函数、相似三角形的判定和性质、四点共圆、勾股定理等知识点,解题的关键是学会添加常用辅助线,构造相似三角形解决问题.

    相关试卷

    辽宁省本溪市名校2023年数学八上期末学业质量监测试题【含解析】:

    这是一份辽宁省本溪市名校2023年数学八上期末学业质量监测试题【含解析】,共19页。

    辽宁省本溪市名校2023年数学八上期末学业质量监测试题【含解析】:

    这是一份辽宁省本溪市名校2023年数学八上期末学业质量监测试题【含解析】,共19页。试卷主要包含了考生必须保证答题卡的整洁,当x=-1时,代数式的结果是,①实数和数轴上的点一一对应,已知实数x,y满足|x﹣4|+等内容,欢迎下载使用。

    2022年广东省广州市名校联盟重点名校中考数学最后一模试卷含解析:

    这是一份2022年广东省广州市名校联盟重点名校中考数学最后一模试卷含解析,共20页。试卷主要包含了答题时请按要求用笔,一、单选题等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map