年终活动
搜索
    上传资料 赚现金

    来宾市重点中学2022年中考联考数学试题含解析

    来宾市重点中学2022年中考联考数学试题含解析第1页
    来宾市重点中学2022年中考联考数学试题含解析第2页
    来宾市重点中学2022年中考联考数学试题含解析第3页
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    来宾市重点中学2022年中考联考数学试题含解析

    展开

    这是一份来宾市重点中学2022年中考联考数学试题含解析,共18页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图是由一些相同的小正方体组成的几何体的三视图,则组成这个几何体的小正方体个数最多为(  )

    A.7 B.8 C.9 D.10
    2.估计﹣÷2的运算结果在哪两个整数之间(  )
    A.0和1 B.1和2 C.2和3 D.3和4
    3.下列大学的校徽图案是轴对称图形的是( )
    A. B. C. D.
    4.如图,直线a、b被c所截,若a∥b,∠1=45°,∠2=65°,则∠3的度数为( )

    A.110° B.115° C.120° D.130°
    5.钟鼎文是我国古代的一种文字,是铸刻在殷周青铜器上的铭文,下列钟鼎文中,不是轴对称图形的是( )
    A. B. C. D.
    6.中国传统扇文化有着深厚的底蕴,下列扇面图形是中心对称图形的是( )
    A. B. C. D.
    7.如图,是的直径,弦,,,则阴影部分的面积为( )

    A.2π B.π C. D.
    8.如图,已知点A在反比例函数y=上,AC⊥x轴,垂足为点C,且△AOC的面积为4,则此反比例函数的表达式为(  )

    A.y= B.y= C.y= D.y=﹣
    9.在,,,这四个数中,比小的数有( )个.
    A. B. C. D.
    10.二次函数y=x2﹣6x+m的图象与x轴有两个交点,若其中一个交点的坐标为(1,0),则另一个交点的坐标为(  )
    A.(﹣1,0) B.(4,0) C.(5,0) D.(﹣6,0)
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,AE是正八边形ABCDEFGH的一条对角线,则∠BAE= °.

    12.如图,⊙O中,弦AB、CD相交于点P,若∠A=30°,∠APD=70°,则∠B等于_____.

    13.如图,直线y1=kx+n(k≠0)与抛物线y2=ax2+bx+c(a≠0)分别交于A(﹣1,0),B(2,﹣3)两点,那么当y1>y2时,x的取值范围是_____.

    14.如图:图象①②③均是以P0为圆心,1个单位长度为半径的扇形,将图形①②③分别沿东北,正南,西北方向同时平移,每次移动一个单位长度,第一次移动后图形①②③的圆心依次为P1P2P3,第二次移动后图形①②③的圆心依次为P4P5P6…,依此规律,P0P2018=_____个单位长度.

    15.已知一组数据1,2,x,2,3,3,5,7的众数是2,则这组数据的中位数是  .
    16.如图,在△ABC中,∠A=70°,∠B=50°,点D,E分别为AB,AC上的点,沿DE折叠,使点A落在BC边上点F处,若△EFC为直角三角形,则∠BDF的度数为______.

    三、解答题(共8题,共72分)
    17.(8分)目前节能灯在城市已基本普及,今年某省面向农村地区推广,为响应号召,某商场用3300元购进节能灯100只,这两种节能灯的进价、售价如表:

    进价元只
    售价元只
    甲种节能灯
    30
    40
    乙种节能灯
    35
    50
    求甲、乙两种节能灯各进多少只?
    全部售完100只节能灯后,该商场获利多少元?
    18.(8分)如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点.求反比例函数和一次函数的解析式;求直线AB与x轴的交点C的坐标及△AOB的面积;直接写出一次函数的值小于反比例函数值的x的取值范围.

    19.(8分)如图,已知△ABC内接于⊙O,BC交直径AD于点E,过点C作AD的垂线交AB的延长线于点G,垂足为F.连接OC.
    (1)若∠G=48°,求∠ACB的度数;
    (1)若AB=AE,求证:∠BAD=∠COF;
    (3)在(1)的条件下,连接OB,设△AOB的面积为S1,△ACF的面积为S1.若tan∠CAF=,求的值.

    20.(8分)如图是8×8的正方形网格,A、B两点均在格点(即小正方形的顶点)上,试在下面三个图中,分别画出一个以A,B,C,D为顶点的格点菱形(包括正方形),要求所画的三个菱形互不全等.

    21.(8分)计算:﹣|﹣2|+()﹣1﹣2cos45°
    22.(10分)为了进一步改善环境,郑州市今年增加了绿色自行车的数量,已知A型号的自行车比B型号的自行车的单价低30元,买8辆A型号的自行车与买7辆B型号的自行车所花费用相同. 
    (1)A,B两种型号的自行车的单价分别是多少? 
    (2)若购买A,B两种自行车共600辆,且A型号自行车的数量不多于B型号自行车的一半,请你给出一种最省钱的方案,并求出该方案所需要的费用.
    23.(12分)如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F
    (1)证明:PC=PE;
    (2)求∠CPE的度数;
    (3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.

    24.科技改变生活,手机导航极大方便了人们的出行,如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西55°方向行驶4千米至B地,再沿北偏东35°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B、C两地的距离(结果保留整数)(参考数据:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8)




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、C
    【解析】
    主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.
    【详解】
    根据三视图知,该几何体中小正方体的分布情况如下图所示:

    所以组成这个几何体的小正方体个数最多为9个,
    故选C.
    【点睛】
    考查了三视图判定几何体,关键是对三视图灵活运用,体现了对空间想象能力的考查.
    2、D
    【解析】
    先估算出的大致范围,然后再计算出÷2的大小,从而得到问题的答案.
    【详解】
    25<32<31,∴5<<1.
    原式=﹣2÷2=﹣2,∴3<﹣÷2<2.
    故选D.
    【点睛】
    本题主要考查的是二次根式的混合运算,估算无理数的大小,利用夹逼法估算出的大小是解题的关键.
    3、B
    【解析】
    根据轴对称图形的概念对各选项分析判断即可得解.
    【详解】
    解:A、不是轴对称图形,故本选项错误;
    B、是轴对称图形,故本选项正确;
    C、不是轴对称图形,故本选项错误;
    D、不是轴对称图形,故本选项错误.
    故选:B.
    【点睛】
    本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
    4、A
    【解析】
    试题分析:首先根据三角形的外角性质得到∠1+∠2=∠4,然后根据平行线的性质得到∠3=∠4求解.
    解:根据三角形的外角性质,
    ∴∠1+∠2=∠4=110°,
    ∵a∥b,
    ∴∠3=∠4=110°,
    故选A.

    点评:本题考查了平行线的性质以及三角形的外角性质,属于基础题,难度较小.
    5、A
    【解析】
    根据轴对称图形的概念求解.
    解:根据轴对称图形的概念可知:B,C,D是轴对称图形,A不是轴对称图形,
    故选A.
    “点睛”本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
    6、C
    【解析】
    根据中心对称图形的概念进行分析.
    【详解】
    A、不是中心对称图形,故此选项错误;
    B、不是中心对称图形,故此选项错误;
    C、是中心对称图形,故此选项正确;
    D、不是中心对称图形,故此选项错误;
    故选:C.
    【点睛】
    考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后两部分重合.
    7、D
    【解析】
    分析:连接OD,则根据垂径定理可得出CE=DE,继而将阴影部分的面积转化为扇形OBD的面积,代入扇形的面积公式求解即可.
    详解:连接OD,
    ∵CD⊥AB,
    ∴ (垂径定理),

    即可得阴影部分的面积等于扇形OBD的面积,
    又∵
    ∴ (圆周角定理),
    ∴OC=2,
    故S扇形OBD=
    即阴影部分的面积为.
    故选D.

    点睛:考查圆周角定理,垂径定理,扇形面积的计算,熟记扇形的面积公式是解题的关键.
    8、C
    【解析】
    由双曲线中k的几何意义可知 据此可得到|k|的值;由所给图形可知反比例函数图象的两支分别在第一、三象限,从而可确定k的正负,至此本题即可解答.
    【详解】
    ∵S△AOC=4,
    ∴k=2S△AOC=8;
    ∴y=;
    故选C.
    【点睛】
    本题是关于反比例函数的题目,需结合反比例函数中系数k的几何意义解答;
    9、B
    【解析】
    比较这些负数的绝对值,绝对值大的反而小.
    【详解】
    在﹣4、﹣、﹣1、﹣这四个数中,比﹣2小的数是是﹣4和﹣.故选B.
    【点睛】
    本题主要考查负数大小的比较,解题的关键时负数比较大小时,绝对值大的数反而小.
    10、C
    【解析】
    根据二次函数解析式求得对称轴是x=3,由抛物线的对称性得到答案.
    【详解】
    解:由二次函数得到对称轴是直线,则抛物线与轴的两个交点坐标关于直线对称,
    ∵其中一个交点的坐标为,则另一个交点的坐标为,
    故选C.
    【点睛】
    考查抛物线与x轴的交点坐标,解题关键是掌握抛物线的对称性质.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、67.1
    【解析】
    试题分析:∵图中是正八边形,
    ∴各内角度数和=(8﹣2)×180°=1080°,
    ∴∠HAB=1080°÷8=131°,
    ∴∠BAE=131°÷2=67.1°.
    故答案为67.1.
    考点:多边形的内角
    12、40°
    【解析】
    由∠A=30°,∠APD=70°,利用三角形外角的性质,即可求得∠C的度数,又由在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得∠B的度数.
    【详解】
    解:∵∠A=30°,∠APD=70°,
    ∴∠C=∠APD﹣∠A=40°,
    ∵∠B与∠C是对的圆周角,
    ∴∠B=∠C=40°.
    故答案为40°.
    【点睛】
    此题考查了圆周角定理与三角形外角的性质.此题难度不大,解题的关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等定理的应用.
    13、﹣1<x<2
    【解析】
    根据图象得出取值范围即可.
    【详解】
    解:因为直线y1=kx+n(k≠0)与抛物线y2=ax2+bx+c(a≠0)分别交于A(﹣1,0),B(2,﹣3)两点,
    所以当y1>y2时,﹣1<x<2,
    故答案为﹣1<x<2
    【点睛】
    此题考查二次函数与不等式,关键是根据图象得出取值范围.
    14、1
    【解析】
    根据P0P1=1,P0P2=1,P0P3=1;P0P4=2,P0P5=2,P0P6=2;P0P7=3,P0P8=3,P0P9=3;可知每移动一次,圆心离中心的距离增加1个单位,依据2018=3×672+2,即可得到点P2018在正南方向上,P0P2018=672+1=1.
    【详解】
    由图可得,P0P1=1,P0P2=1,P0P3=1;
    P0P4=2,P0P5=2,P0P6=2;
    P0P7=3,P0P8=3,P0P9=3;
    ∵2018=3×672+2,
    ∴点P2018在正南方向上,
    ∴P0P2018=672+1=1,
    故答案为1.
    【点睛】
    本题主要考查了坐标与图形变化,应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.
    15、2.1
    【解析】
    试题分析:∵数据1,2,x,2,3,3,1,7的众数是2,
    ∴x=2,
    ∴这组数据的中位数是(2+3)÷2=2.1;
    故答案为2.1.
    考点:1、众数;2、中位数
    16、110°或50°.
    【解析】
    由内角和定理得出∠C=60°,根据翻折变换的性质知∠DFE=∠A=70°,再分∠EFC=90°和∠FEC=90°两种情况,先求出∠DFC度数,继而由∠BDF=∠DFC﹣∠B可得答案.
    【详解】
    ∵△ABC中,∠A=70°、∠B=50°,∴∠C=180°﹣∠A﹣∠B=60°,由翻折性质知∠DFE=∠A=70°,分两种情况讨论:
    ①当∠EFC=90°时,∠DFC=∠DFE+∠EFC=160°,则∠BDF=∠DFC﹣∠B=110°;
    ②当∠FEC=90°时,∠EFC=180°﹣∠FEC﹣∠C=30°,∴∠DFC=∠DFE+∠EFC=100°,∠BDF=∠DFC﹣∠B=50°;
    综上:∠BDF的度数为110°或50°.
    故答案为110°或50°.
    【点睛】
    本题考查的是图形翻折变换的性质及三角形内角和定理,熟知折叠的性质、三角形的内角和定理、三角形外角性质是解答此题的关键.

    三、解答题(共8题,共72分)
    17、甲、乙两种节能灯分别购进40、60只;商场获利1300元.
    【解析】
    (1)利用节能灯数量和所用的价钱建立方程组即可;
    (2)每种灯的数量乘以每只灯的利润,最后求出之和即可.
    【详解】
    (1)设商场购进甲种节能灯x只,购进乙种节能灯y只,
    根据题意,得,
    解这个方程组,得 ,
    答:甲、乙两种节能灯分别购进40、60只.
    (2)商场获利元,
    答:商场获利1300元.
    【点睛】
    此题是二元一次方程组的应用,主要考查了列方程组解应用题的步骤和方法,利润问题,解本题的关键是求出两种节能灯的数量.
    18、(1)y=﹣x﹣2;(2)C(﹣2,0),△AOB=6,,(3)﹣4<x<0或x>2.
    【解析】
    (1)先把B点坐标代入代入y=,求出m得到反比例函数解析式,再利用反比例函数解析式确定A点坐标,然后利用待定系数法求一次函数解析式;
    (2)根据x轴上点的坐标特征确定C点坐标,然后根据三角形面积公式和△AOB的面积=S△AOC+S△BOC进行计算;
    (3)观察函数图象得到当﹣4<x<0或x>2时,一次函数图象都在反比例函数图象下方.
    【详解】
    解:∵B(2,﹣4)在反比例函数y=的图象上,
    ∴m=2×(﹣4)=﹣8,
    ∴反比例函数解析式为:y=﹣,
    把A(﹣4,n)代入y=﹣,
    得﹣4n=﹣8,解得n=2,
    则A点坐标为(﹣4,2).
    把A(﹣4,2),B(2,﹣4)分别代入y=kx+b,
    得,解得,
    ∴一次函数的解析式为y=﹣x﹣2;
    (2)∵y=﹣x﹣2,
    ∴当﹣x﹣2=0时,x=﹣2,
    ∴点C的坐标为:(﹣2,0),
    △AOB的面积=△AOC的面积+△COB的面积
    =×2×2+×2×4
    =6;
    (3)由图象可知,当﹣4<x<0或x>2时,一次函数的值小于反比例函数的值.
    【点睛】
    本题考查的是一次函数与反比例函数的交点问题以及待定系数法的运用,灵活运用待定系数法是解题的关键,注意数形结合思想的正确运用.
    19、(1)48°(1)证明见解析(3)
    【解析】
    (1)连接CD,根据圆周角定理和垂直的定义可得结论;
    (1)先根据等腰三角形的性质得:∠ABE=∠AEB,再证明∠BCG=∠DAC,可得 ,则所对的圆周角相等,根据同弧所对的圆周角和圆心角的关系可得结论;
    (3)过O作OG⊥AB于G,证明△COF≌△OAG,则OG=CF=x,AG=OF,设OF=a,则OA=OC=1x-a,根据勾股定理列方程得:(1x-a)1=x1+a1,则a=x,代入面积公式可得结论.
    【详解】
    (1)连接CD,
    ∵AD是⊙O的直径,
    ∴∠ACD=90°,
    ∴∠ACB+∠BCD=90°,
    ∵AD⊥CG,
    ∴∠AFG=∠G+∠BAD=90°,
    ∵∠BAD=∠BCD,
    ∴∠ACB=∠G=48°;
    (1)∵AB=AE,
    ∴∠ABE=∠AEB,
    ∵∠ABC=∠G+∠BCG,∠AEB=∠ACB+∠DAC,
    由(1)得:∠G=∠ACB,
    ∴∠BCG=∠DAC,
    ∴,
    ∵AD是⊙O的直径,AD⊥PC,
    ∴,
    ∴,
    ∴∠BAD=1∠DAC,
    ∵∠COF=1∠DAC,
    ∴∠BAD=∠COF;
    (3)过O作OG⊥AB于G,设CF=x,
    ∵tan∠CAF== ,
    ∴AF=1x,
    ∵OC=OA,由(1)得:∠COF=∠OAG,
    ∵∠OFC=∠AGO=90°,
    ∴△COF≌△OAG,
    ∴OG=CF=x,AG=OF,
    设OF=a,则OA=OC=1x﹣a,
    Rt△COF中,CO1=CF1+OF1,
    ∴(1x﹣a)1=x1+a1,
    a=x,
    ∴OF=AG=x,
    ∵OA=OB,OG⊥AB,
    ∴AB=1AG=x,
    ∴.

    【点睛】
    圆的综合题,考查了三角形的面积、垂径定理、角平分线的性质、三角形全等的性质和判定以及解直角三角形,解题的关键是:(1)根据圆周角定理找出∠ACB+∠BCD=90°;(1)根据外角的性质和圆的性质得:;(3)利用三角函数设未知数,根据勾股定理列方程解决问题.
    20、见解析
    【解析】
    根据菱形的四条边都相等,两条对角线互相垂直平分,可以根据正方形的四边垂直,将小正方形的边作为对角线画菱形;也可以画出以AB为边长的正方形,据此相信你可以画出图形了,注意:本题答案不唯一.
    【详解】
    如图为画出的菱形:

    【点睛】
    本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法;解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.本题掌握菱形的定义与性质是解题的关键.
    21、+1
    【解析】
    分析:直接利用二次根式的性质、负指数幂的性质和特殊角的三角函数值分别化简求出答案.
    详解:原式=2﹣2+3﹣2×
    =2+1﹣
    =+1.
    点睛:本题主要考查了实数运算,正确化简各数是解题的关键.
    22、(1)A型自行车的单价为210元,B型自行车的单价为240元.(2) 最省钱的方案是购买A型自行车200辆,B型自行车的400辆,总费用为138000元.
    【解析】
    分析:(1)设A型自行车的单价为x元,B型自行车的单价为y元,构建方程组即可解决问题.
    (2)设购买A型自行车a辆,B型自行车的(600-a)辆.总费用为w元.构建一次函数,利用一次函数的性质即可解决问题.
    详解:(1)设A型自行车的单价为x元,B型自行车的单价为y元, 
    由题意, 
    解得, 
    型自行车的单价为210元,B型自行车的单价为240元. 
    (2)设购买A型自行车a辆,B型自行车的辆.总费用为w元. 
    由题意, 

    随a的增大而减小, 


    ∴当时,w有最小值,最小值, 
    ∴最省钱的方案是购买A型自行车200辆,B型自行车的400辆,总费用为138000元.
    点睛:本题考查一次函数的应用,二元一次方程组的应用等知识,解题的关键是学会设未知数,构建方程组或一次函数解决实际问题,属于中考常考题型.
    23、(1)证明见解析(2)90°(3)AP=CE
    【解析】
    (1)、根据正方形得出AB=BC,∠ABP=∠CBP=45°,结合PB=PB得出△ABP ≌△CBP,从而得出结论;(2)、根据全等得出∠BAP=∠BCP,∠DAP=∠DCP,根据PA=PE得出∠DAP=∠E,即∠DCP=∠E,易得答案;(3)、首先证明△ABP和△CBP全等,然后得出PA=PC,∠BAP=∠BCP,然后得出∠DCP=∠E,从而得出∠CPF=∠EDF=60°,然后得出△EPC是等边三角形,从而得出AP=CE.
    【详解】
    (1)、在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,
    在△ABP和△CBP中,又∵ PB=PB ∴△ABP ≌△CBP(SAS), ∴PA=PC,∵PA=PE,∴PC=PE;
    (2)、由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,
    ∵PA=PE, ∴∠DAP=∠E, ∴∠DCP=∠E, ∵∠CFP=∠EFD(对顶角相等),
    ∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E, 即∠CPF=∠EDF=90°;
    (3)、AP=CE
    理由是:在菱形ABCD中,AB=BC,∠ABP=∠CBP,
    在△ABP和△CBP中, 又∵ PB=PB ∴△ABP≌△CBP(SAS),
    ∴PA=PC,∠BAP=∠DCP,
    ∵PA=PE,∴PC=PE,∴∠DAP=∠DCP, ∵PA=PC ∴∠DAP=∠E, ∴∠DCP=∠E
    ∵∠CFP=∠EFD(对顶角相等), ∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,
    即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°, ∴△EPC是等边三角形,∴PC=CE,∴AP=CE
    考点:三角形全等的证明
    24、B、C两地的距离大约是6千米.
    【解析】
    过B作BD⊥AC于点D,在直角△ABD中利用三角函数求得BD的长,然后在直角△BCD中利用三角函数求得BC的长.
    【详解】
    解:过B作于点D.
    在中,千米,
    中,,
    千米,
    千米.
    答:B、C两地的距离大约是6千米.

    【点睛】
    此题考查了方向角问题.此题难度适中,解此题的关键是将方向角问题转化为解直角三角形的知识,利用三角函数的知识求解.

    相关试卷

    2022年郑州市重点中学中考联考数学试题含解析:

    这是一份2022年郑州市重点中学中考联考数学试题含解析,共20页。试卷主要包含了如图所示的几何体的左视图是,某校八,如果将直线l1等内容,欢迎下载使用。

    2022年来宾市重点中学中考数学五模试卷含解析:

    这是一份2022年来宾市重点中学中考数学五模试卷含解析,共23页。试卷主要包含了最小的正整数是等内容,欢迎下载使用。

    2022年海南省重点中学中考联考数学试题含解析:

    这是一份2022年海南省重点中学中考联考数学试题含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁,在数轴上表示不等式2,计算的值为,的相反数是等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map