开学活动
搜索
    上传资料 赚现金

    辽宁省抚顺市望花区达标名校2022年中考数学最后冲刺模拟试卷含解析

    辽宁省抚顺市望花区达标名校2022年中考数学最后冲刺模拟试卷含解析第1页
    辽宁省抚顺市望花区达标名校2022年中考数学最后冲刺模拟试卷含解析第2页
    辽宁省抚顺市望花区达标名校2022年中考数学最后冲刺模拟试卷含解析第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    辽宁省抚顺市望花区达标名校2022年中考数学最后冲刺模拟试卷含解析

    展开

    这是一份辽宁省抚顺市望花区达标名校2022年中考数学最后冲刺模拟试卷含解析,共19页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(共10小题,每小题3分,共30分)
    1.二次函数y=a(x-4)2-4(a≠0)的图象在2<x<3这一段位于x轴的下方,在6<x<7这一段位于x轴的上方,则a的值为(   )
    A.1     B.-1   C.2    D.-2
    2.下列几何体是棱锥的是( )
    A. B. C. D.
    3.计算(ab2)3的结果是(  )
    A.ab5 B.ab6 C.a3b5 D.a3b6
    4.甲、乙两位同学做中国结,已知甲每小时比乙少做6个,甲做30个所用的时间与乙做45个所用的时间相等,求甲每小时做中国结的个数.如果设甲每小时做x个,那么可列方程为( )
    A.= B.=
    C.= D.=
    5.如图是本地区一种产品30天的销售图象,图①是产品日销售量y(单位:件)与时间t(单位;天)的函数关系,图②是一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润,下列结论错误的是(  )

    A.第24天的销售量为200件 B.第10天销售一件产品的利润是15元
    C.第12天与第30天这两天的日销售利润相等 D.第27天的日销售利润是875元
    6.甲车行驶30千米与乙车行驶40千米所用时间相同,已知乙车每小时比甲车多行驶15千米,设甲车的速度为千米/小时,依据题意列方程正确的是( )
    A. B. C. D.
    7.某种超薄气球表面的厚度约为,这个数用科学记数法表示为( )
    A. B. C. D.
    8.如图,在▱ABCD中,AB=2,BC=1.以点C为圆心,适当长为半径画弧,交BC于点P,交CD于点Q,再分别以点P,Q为圆心,大于PQ的长为半径画弧,两弧相交于点N,射线CN交BA的延长线于点E,则AE的长是(  )

    A. B.1 C. D.
    9.如图是由四个相同的小正方形组成的立体图形,它的俯视图为( )

    A. B. C. D.
    10.如图,△ABC内接于半径为5的⊙O,圆心O到弦BC的距离等于3,则∠A的正切值等于( )

    A. B. C. D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.某商品原售价为100元,经连续两次涨价后售价为121元,设平均每次涨价的百分率为x,则依题意所列的方程是_____________.
    12.在20km越野赛中,甲乙两选手的行程y(单位:km)随时间x(单位:h)变化的图象如图所示,根据图中提供的信息,有下列说法:
    ①两人相遇前,甲的速度小于乙的速度;
    ②出发后1小时,两人行程均为10km;
    ③出发后1.5小时,甲的行程比乙多3km;
    ④甲比乙先到达终点.
    其中正确的有_____个.

    13.若a2+3=2b,则a3﹣2ab+3a=_____.
    14.的算术平方根是_____.
    15.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(,0),B(0,4),则点B4的坐标为_____,点B2017的坐标为_____.

    16.因式分解:________.
    三、解答题(共8题,共72分)
    17.(8分)随着移动计算技术和无线网络的快速发展,移动学习方式越来越引起人们的关注,某校计划将这种学习方式应用到教育学中,从全校1500名学生中随机抽取了部分学生,对其家庭中拥有的移动设备的情况进行调查,并绘制出如下的统计图①和图②,根据相关信息,解答下列问题:本次接受随机抽样调查的学生人数为   ,图①中m的值为   ;求本次调查获取的样本数据的众数、中位数和平均数;根据样本数据,估计该校1500名学生家庭中拥有3台移动设备的学生人数.

    18.(8分)如图,△ABC内接于⊙O,CD是⊙O的直径,AB与CD交于点E,点P是CD延长线上的一点,AP=AC,且∠B=2∠P.
    (1)求证:PA是⊙O的切线;
    (2)若PD=,求⊙O的直径;
    (3)在(2)的条件下,若点B等分半圆CD,求DE的长.

    19.(8分)如图,足球场上守门员在处开出一高球,球从离地面1米的处飞出(在轴上),运动员乙在距点6米的处发现球在自己头的正上方达到最高点,距地面约4米高,球落地后又一次弹起.据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.
    求足球开始飞出到第一次落地时,该抛物线的表达式.足球第一次落地点距守门员多少米?(取)运动员乙要抢到第二个落点,他应再向前跑多少米?
    20.(8分)如图,AB为⊙O的直径,点E在⊙O上,C为的中点,过点C作直线CD⊥AE于D,连接AC、BC.
    (1)试判断直线CD与⊙O的位置关系,并说明理由;
    (2)若AD=2,AC=,求AB的长.

    21.(8分)如图所示,在梯形ABCD中,AD∥BC,AB=AD,∠BAD的平分线AE交BC于点E,连接DE.

    (1)求证:四边形ABED是菱形;
    (2)若∠ABC=60°,CE=2BE,试判断△CDE的形状,并说明理由.
    22.(10分)八年级(1)班研究性学习小组为研究全校同学课外阅读情况,在全校随机邀请了部分同学参与问卷调查,统计同学们一个月阅读课外书的数量,并绘制了以下统计图.

    请根据图中信息解决下列问题:
    (1)共有   名同学参与问卷调查;
    (2)补全条形统计图和扇形统计图;
    (3)全校共有学生1500人,请估计该校学生一个月阅读2本课外书的人数约为多少.
    23.(12分)某学校2017年在某商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍.且购买一个乙种足球比购买一个甲种足球多花20元;
    (1)求购买一个甲种足球、一个乙种足球各需多少元;
    (2)2018年这所学校决定再次购买甲、乙两种足球共50个.恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%.如果此次购买甲、乙两种足球的总费用不超过2910元,那么这所学校最多可购买多少个乙种足球?
    24.解不等式,并把解集在数轴上表示出来.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、A
    【解析】
    试题分析:根据角抛物线顶点式得到对称轴为直线x=4,利用抛物线对称性得到抛物线在1<x<2这段位于x轴的上方,而抛物线在2<x<3这段位于x轴的下方,于是可得抛物线过点(2,0)然后把(2,0)代入y=a(x-4)2-4(a≠0)可求出a=1.
    故选A
    2、D
    【解析】
    分析:根据棱锥的概念判断即可.
    A是三棱柱,错误;
    B是圆柱,错误;
    C是圆锥,错误;
    D是四棱锥,正确.
    故选D.
    点睛:本题考查了立体图形的识别,关键是根据棱锥的概念判断.
    3、D
    【解析】
    试题分析:根据积的乘方的性质进行计算,然后直接选取答案即可.
    试题解析:(ab2)3=a3•(b2)3=a3b1.
    故选D.
    考点:幂的乘方与积的乘方.
    4、A
    【解析】
    设甲每小时做x个,乙每小时做(x+6)个,根据甲做 30 个所用时间与乙做 45 个所用时间相等即可列方程.
    【详解】
    设甲每小时做 x 个,乙每小时做(x+6)个, 根据甲做 30 个所用时间与乙做 45 个所用时间相等可得=.
    故选A.
    【点睛】
    本题考查了分式方程的应用,找到关键描述语,正确找出等量关系是解决问题的关键.
    5、C
    【解析】
    试题解析:A、根据图①可得第24天的销售量为200件,故正确;
    B、设当0≤t≤20,一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系为z=kx+b,
    把(0,25),(20,5)代入得:,
    解得:,
    ∴z=-x+25,
    当x=10时,y=-10+25=15,
    故正确;
    C、当0≤t≤24时,设产品日销售量y(单位:件)与时间t(单位;天)的函数关系为y=k1t+b1,
    把(0,100),(24,200)代入得:,
    解得:,
    ∴y=t+100,
    当t=12时,y=150,z=-12+25=13,
    ∴第12天的日销售利润为;150×13=1950(元),第30天的日销售利润为;150×5=750(元),
    750≠1950,故C错误;
    D、第30天的日销售利润为;150×5=750(元),故正确.
    故选C
    6、C
    【解析】
    由实际问题抽象出方程(行程问题).
    【分析】∵甲车的速度为千米/小时,则乙甲车的速度为千米/小时
    ∴甲车行驶30千米的时间为,乙车行驶40千米的时间为,
    ∴根据甲车行驶30千米与乙车行驶40千米所用时间相同得.故选C.
    7、A
    【解析】
    绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
    【详解】

    故选:A.
    【点睛】
    本题考查了用科学记数法表示较小的数,一般形式为,其中,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
    8、B
    【解析】
    分析:只要证明BE=BC即可解决问题;
    详解:∵由题意可知CF是∠BCD的平分线,
    ∴∠BCE=∠DCE.
    ∵四边形ABCD是平行四边形,
    ∴AB∥CD,
    ∴∠DCE=∠E,∠BCE=∠AEC,
    ∴BE=BC=1,
    ∵AB=2,
    ∴AE=BE-AB=1,
    故选B.
    点睛:本题考查的是作图-基本作图,熟知角平分线的作法是解答此题的关键.
    9、B
    【解析】
    根据俯视图是从上往下看的图形解答即可.
    【详解】
    从上往下看到的图形是:
    .
    故选B.
    【点睛】
    本题考查三视图的知识,解决此类图的关键是由三视图得到相应的立体图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.
    10、C.
    【解析】
    试题分析:如答图,过点O作OD⊥BC,垂足为D,连接OB,OC,
    ∵OB=5,OD=3,∴根据勾股定理得BD=4.
    ∵∠A=∠BOC,∴∠A=∠BOD.
    ∴tanA=tan∠BOD=.
    故选D.

    考点:1.垂径定理;2.圆周角定理;3.勾股定理;4.锐角三角函数定义.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、100(1+x)2=121
    【解析】
    根据题意给出的等量关系即可求出答案.
    【详解】
    由题意可知:100(1+x)2=121
    故答案为:100(1+x)2=121
    【点睛】
    本题考查一元二次方程的应用,解题的关键是正确找出等量关系,本题属于基础题型.
    12、1
    【解析】
    试题解析:在两人出发后0.5小时之前,甲的速度小于乙的速度,0.5小时到1小时之间,甲的速度大于乙的速度,故①错误;
    由图可得,两人在1小时时相遇,行程均为10km,故②正确;
    甲的图象的解析式为y=10x,乙AB段图象的解析式为y=4x+6,因此出发1.5小时后,甲的路程为15千米,乙的路程为12千米,甲的行程比乙多3千米,故③正确;
    甲到达终点所用的时间较少,因此甲比乙先到达终点,故④正确.

    13、1
    【解析】
    利用提公因式法将多项式分解为a(a2+3)-2ab,将a2+3=2b代入可求出其值.
    【详解】
    解:∵a2+3=2b,
    ∴a3-2ab+3a=a(a2+3)-2ab=2ab-2ab=1,
    故答案为1.
    【点睛】
    本题考查了因式分解的应用,利用提公因式法将多项式分解是本题的关键.
    14、
    【解析】
    ∵=8,()2=8,
    ∴的算术平方根是.
    故答案为:.
    15、(20,4) (10086,0)
    【解析】
    首先利用勾股定理得出AB的长,进而得出三角形的周长,进而求出B2,B4的横坐标,进而得出变化规律,即可得出答案.
    【详解】
    解:由题意可得:∵AO=,BO=4,∴AB=,∴OA+AB1+B1C2=++4=6+4=10,∴B2的横坐标为:10,B4的横坐标为:2×10=20,B2016的横坐标为:×10=1.
    ∵B2C2=B4C4=OB=4,∴点B4的坐标为(20,4),∴B2017的横坐标为1++=10086,纵坐标为0,∴点B2017的坐标为:(10086,0).
    故答案为(20,4)、(10086,0).
    【点睛】
    本题主要考查了点的坐标以及图形变化类,根据题意得出B点横坐标变化规律是解题的关键.
    16、n(m+2)(m﹣2)
    【解析】
    先提取公因式 n,再利用平方差公式分解即可.
    【详解】
    m2n﹣4n=n(m2﹣4)=n(m+2)(m﹣2)..
    故答案为n(m+2)(m﹣2).
    【点睛】
    本题主要考查了提取公因式法和公式法分解因式,熟练掌握平方差公式是解题关键

    三、解答题(共8题,共72分)
    17、(Ⅰ)50、31;(Ⅱ)4;3;3.1;(Ⅲ)410人.
    【解析】
    (Ⅰ)利用家庭中拥有1台移动设备的人数除以其所占百分比即可得调查的学生人数,将拥有4台移动设备的人数除以总人数即可求得m的值;(Ⅱ)根据众数、中位数、加权平均数的定义计算即可;(Ⅲ)将样本中拥有3台移动设备的学生人数所占比例乘以总人数1500即可求解.
    【详解】
    解:(Ⅰ)本次接受随机抽样调查的学生人数为: =50(人),
    ∵×100=31%,
    ∴图①中m的值为31.
    故答案为50、31;
    (Ⅱ)∵这组样本数据中,4出现了16次,出现次数最多,
    ∴这组数据的众数为4;
    ∵将这组数据从小到大排列,其中处于中间的两个数均为3,有=3,
    ∴这组数据的中位数是3;
    由条形统计图可得=3.1,
    ∴这组数据的平均数是3.1.
    (Ⅲ)1500×18%=410(人).
    答:估计该校学生家庭中;拥有3台移动设备的学生人数约为410人.
    【点睛】
    本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
    18、(1)证明见解析;(2);(3);
    【解析】
    (1)连接OA、AD,如图,利用圆周角定理得到∠B=∠ADC,则可证明∠ADC=2
    ∠ACP,利用CD为直径得到∠DAC=90°,从而得到∠ADC=60°,∠C=30°,则∠AOP=60°,
    于是可证明∠OAP=90°,然后根据切线的判断定理得到结论;
    (2)利用∠P=30°得到OP=2OA,则,从而得到⊙O的直径;
    (3)作EH⊥AD于H,如图,由点B等分半圆CD得到∠BAC=45°,则∠DAE=45°,设
    DH=x,则DE=2x,所以 然后求出x即可
    得到DE的长.
    【详解】
    (1)证明:连接OA、AD,如图,
    ∵∠B=2∠P,∠B=∠ADC,
    ∴∠ADC=2∠P,
    ∵AP=AC,
    ∴∠P=∠ACP,
    ∴∠ADC=2∠ACP,
    ∵CD为直径,
    ∴∠DAC=90°,
    ∴∠ADC=60°,∠C=30°,
    ∴△ADO为等边三角形,
    ∴∠AOP=60°,
    而∠P=∠ACP=30°,
    ∴∠OAP=90°,
    ∴OA⊥PA,
    ∴PA是⊙O的切线;
    (2)解:在Rt△OAP中,∵∠P=30°,
    ∴OP=2OA,

    ∴⊙O的直径为;
    (3)解:作EH⊥AD于H,如图,
    ∵点B等分半圆CD,
    ∴∠BAC=45°,
    ∴∠DAE=45°,
    设DH=x,
    在Rt△DHE中,DE=2x,
    在Rt△AHE中,


    解得


    【点睛】
    本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线.圆的切线垂直于经过切点的半径.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;有切线时,常常“遇到切点连圆心得半径”.也考查了圆周角定理.
    19、(1)(或)(2)足球第一次落地距守门员约13米.(3)他应再向前跑17米.
    【解析】
    (1)依题意代入x的值可得抛物线的表达式.
    (2)令y=0可求出x的两个值,再按实际情况筛选.
    (3)本题有多种解法.如图可得第二次足球弹出后的距离为CD,相当于将抛物线AEMFC向下平移了2个单位可得解得x的值即可知道CD、BD.
    【详解】
    解:(1)如图,设第一次落地时,
    抛物线的表达式为
    由已知:当时 

    表达式为(或)

    (2)令
    (舍去).
    足球第一次落地距守门员约13米.
    (3)解法一:如图,第二次足球弹出后的距离为
    根据题意:(即相当于将抛物线向下平移了2个单位)
    解得

    (米).
    答:他应再向前跑17米.
    20、(1)证明见解析(2)3
    【解析】
    (1)连接,由为的中点,得到,等量代换得到,根据平行线的性质得到,即可得到结论;
    (2)连接,由勾股定理得到,根据切割线定理得到,根据勾股定理得到,由圆周角定理得到,即可得到结论.
    【详解】
    相切,连接,
    ∵为的中点,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴,

    ∴直线与相切;
    方法:连接,
    ∵,,
    ∵,
    ∴,
    ∵是的切线,
    ∴,
    ∴,
    ∴,
    ∵为的中点,
    ∴,
    ∵为的直径,
    ∴,
    ∴.
    方法:∵,
    易得,
    ∴,
    ∴.
    【点睛】
    本题考查了直线与圆的位置关系,切线的判定和性质,圆周角定理,勾股定理,平行线的性质,切割线定理,熟练掌握各定理是解题的关键.
    21、见解析
    【解析】
    试题分析:(1)先证得四边形ABED是平行四边形,又AB=AD, 邻边相等的平行四边形是菱形;
    (2)四边形ABED是菱形,∠ABC=60°,所以∠DEC=60°,AB=ED,又EC=2BE,EC=2DE,可得△DEC是直角三角形.
    试题解析:梯形ABCD中,AD∥BC,
    ∴四边形ABED是平行四边形,
    又AB=AD,
    ∴四边形ABED是菱形;
    (2)∵四边形ABED是菱形,∠ABC=60°,
    ∴∠DEC=60°,AB=ED,
    又EC=2BE,
    ∴EC=2DE,
    ∴△DEC是直角三角形,
    考点:1.菱形的判定;2.直角三角形的性质;3.平行四边形的判定
    22、(1)100;(2)补图见解析;(3)570人.
    【解析】
    (1)由读书1本的人数及其所占百分比可得总人数;
    (2)总人数乘以读4本的百分比求得其人数,减去男生人数即可得出女生人数,用读2本的人数除以总人数可得对应百分比;
    (3)总人数乘以样本中读2本人数所占比例.
    【详解】
    (1)参与问卷调查的学生人数为(8+2)÷10%=100人,
    故答案为:100;
    (2)读4本的女生人数为100×15%﹣10=5人,
    读2本人数所占百分比为×100%=38%,
    补全图形如下:

    (3)估计该校学生一个月阅读2本课外书的人数约为1500×38%=570人.
    【点睛】
    本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
    23、(1)购买一个甲种足球需要50元,购买一个乙种篮球需要1元(2)这所学校最多可购买2个乙种足球
    【解析】
    (1)根据题意可以列出相应的分式方程,从而可以求得购买一个甲种足球、一个乙种足球各需多少元;
    (2)根据题意可以列出相应的不等式,从而可以求得这所学校最多可购买多少个乙种足球.
    【详解】
    (1)设购买一个甲种足球需要x元,则购买一个乙种篮球需要(x+2)元,
    根据题意得:,
    解得:x=50,
    经检验,x=50是原方程的解,且符合题意,
    ∴x+2=1.
    答:购买一个甲种足球需要50元,购买一个乙种篮球需要1元.
    (2)设可购买m个乙种足球,则购买(50﹣m)个甲种足球,
    根据题意得:50×(1+10%)(50﹣m)+1×(1﹣10%)m≤2910,
    解得:m≤2.
    答:这所学校最多可购买2个乙种足球.
    【点睛】
    本题考查分式方程的应用,一元一次不等式的应用,解答此类问题的关键是明确题意,列出相应的分式方程和一元一次不等式,注意分式方程要检验,问题(2)要与实际相联系.
    24、见解析
    【解析】
    根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得解集.在数轴上表示出来即可.
    【详解】
    解:去分母,得 3x+1-6>4x-2,
    移项,得:3x-4x>-2+5,
    合并同类项,得-x>3,
    系数化为1,得 x<-3,
    不等式的解集在数轴上表示如下:

    【点睛】
    此题考查解一元一次不等式,在数轴上表示不等式的解集,解题关键在于掌握运算顺序.

    相关试卷

    2024年辽宁省抚顺市望花区中考数学三模试卷(含解析):

    这是一份2024年辽宁省抚顺市望花区中考数学三模试卷(含解析),共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年辽宁省抚顺市望花区中考数学质检试卷(四)(含解析):

    这是一份2023年辽宁省抚顺市望花区中考数学质检试卷(四)(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2021-2022学年辽宁省抚顺市望花区中考数学对点突破模拟试卷含解析:

    这是一份2021-2022学年辽宁省抚顺市望花区中考数学对点突破模拟试卷含解析,共20页。试卷主要包含了a的倒数是3,则a的值是等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map