|试卷下载
终身会员
搜索
    上传资料 赚现金
    辽宁省大连高新区名校联盟重点中学2021-2022学年中考数学模试卷含解析
    立即下载
    加入资料篮
    辽宁省大连高新区名校联盟重点中学2021-2022学年中考数学模试卷含解析01
    辽宁省大连高新区名校联盟重点中学2021-2022学年中考数学模试卷含解析02
    辽宁省大连高新区名校联盟重点中学2021-2022学年中考数学模试卷含解析03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    辽宁省大连高新区名校联盟重点中学2021-2022学年中考数学模试卷含解析

    展开
    这是一份辽宁省大连高新区名校联盟重点中学2021-2022学年中考数学模试卷含解析,共23页。试卷主要包含了考生要认真填写考场号和座位序号,已知,,且,则的值为,下列运算结果正确的是,计算±的值为等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图,等腰直角三角形位于第一象限,,直角顶点在直线上,其中点的横坐标为,且两条直角边,分别平行于轴、轴,若反比例函数的图象与有交点,则的取值范围是( ).

    A. B. C. D.
    2.如图,三角形纸片ABC,AB=10cm,BC=7cm,AC=6cm,沿过点B的直线折叠这个三角形,使顶点C落在AB边上的点E处,折痕为BD,则△AED的周长为(  )

    A.9cm B.13cm C.16cm D.10cm
    3.如图,点D、E分别为△ABC的边AB、AC上的中点,则△ADE的面积与四边形BCED的面积的比为(  )

    A.1:2 B.1:3 C.1:4 D.1:1
    4.如图,五边形ABCDE中,AB∥CD,∠1、∠2、∠3分别是∠BAE、∠AED、∠EDC的外角,则∠1+∠2+∠3等于

    A.90° B.180° C.210° D.270°
    5.已知,,且,则的值为( )
    A.2或12 B.2或 C.或12 D.或
    6.下列运算结果正确的是(  )
    A.a3+a4=a7 B.a4÷a3=a C.a3•a2=2a3 D.(a3)3=a6
    7.如果一个正多边形内角和等于1080°,那么这个正多边形的每一个外角等于(  )
    A. B. C. D.
    8.如图,等腰直角三角形的顶点A、C分别在直线a、b上,若a∥b,∠1=30°,则∠2的度数为(  )

    A.30° B.15° C.10° D.20°
    9.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为( )

    A.90° B.60° C.45° D.30°
    10.计算±的值为(  )
    A.±3 B.±9 C.3 D.9
    11.如图所示,点E是正方形ABCD内一点,把△BEC绕点C旋转至△DFC位置,则∠EFC的度数是( )

    A.90° B.30° C.45° D.60°
    12.上体育课时,小明5次投掷实心球的成绩如下表所示,则这组数据的众数与中位数分别是(  )

    1
    2
    3
    4
    5
    成绩(m)
    8.2
    8.0
    8.2
    7.5
    7.8
    A.8.2,8.2 B.8.0,8.2 C.8.2,7.8 D.8.2,8.0
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,在△ABC中,∠C=40°,CA=CB,则△ABC的外角∠ABD= °.

    14.如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交AD的延长线于点E. 若AB=12,BM=5,则DE的长为_________.

    15.因式分解   .
    16.如图,△ABC中,∠A=80°,∠B=40°,BC的垂直平分线交AB于点D,联结DC.如果AD=2,BD=6,那么△ADC的周长为 .

    17.若一次函数y=-2x+b(b为常数)的图象经过第二、三、四象限,则b的值可以是_________.(写出一个即可)
    18.若关于x的函数与x轴仅有一个公共点,则实数k的值为 .
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图1,在平面直角坐标系中,O为坐标原点,抛物线y=ax2+bx+3交x轴于B、C两点(点B在左,点C在右),交y轴于点A,且OA=OC,B(﹣1,0).
    (1)求此抛物线的解析式;
    (2)如图2,点D为抛物线的顶点,连接CD,点P是抛物线上一动点,且在C、D两点之间运动,过点P作PE∥y轴交线段CD于点E,设点P的横坐标为t,线段PE长为d,写出d与t的关系式(不要求写出自变量t的取值范围);
    (3)如图3,在(2)的条件下,连接BD,在BD上有一动点Q,且DQ=CE,连接EQ,当∠BQE+∠DEQ=90°时,求此时点P的坐标.

    20.(6分)如图,△ABC是⊙O的内接三角形,点D在上,点E在弦AB上(E不与A重合),且四边形BDCE为菱形.
    (1)求证:AC=CE;
    (2)求证:BC2﹣AC2=AB•AC;
    (1)已知⊙O的半径为1.
    ①若=,求BC的长;
    ②当为何值时,AB•AC的值最大?

    21.(6分)如图,⊙O是Rt△ABC的外接圆,∠C=90°,tanB=,过点B的直线l是⊙O的切线,点D是直线l上一点,过点D作DE⊥CB交CB延长线于点E,连接AD,交⊙O于点F,连接BF、CD交于点G.
    (1)求证:△ACB∽△BED;
    (2)当AD⊥AC时,求 的值;
    (3)若CD平分∠ACB,AC=2,连接CF,求线段CF的长.

    22.(8分)小强的妈妈想在自家的院子里用竹篱笆围一个面积为4平方米的矩形小花园,妈妈问九年级的小强至少需要几米长的竹篱笆(不考虑接缝).
    小强根据他学习函数的经验做了如下的探究.下面是小强的探究过程,请补充完整:
    建立函数模型:
    设矩形小花园的一边长为x米,篱笆长为y米.则y关于x的函数表达式为________;列表(相关数据保留一位小数):
    根据函数的表达式,得到了x与y的几组值,如下表:
    x
    0.5
    1
    1.5
    2
    2.5
    3
    3.5
    4
    4.5
    5
    y
    17
    10
    8.3

    8.2
    8.7
    9.3

    10.8
    11.6
    描点、画函数图象:
    如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点画出该函数的图象;
    观察分析、得出结论:
    根据以上信息可得,当x=________时,y有最小值.
    由此,小强确定篱笆长至少为________米.

    23.(8分)《孙子算经》是中国传统数学的重要著作之一,其中记载的“荡杯问题”很有趣.《孙子算经》记载“今有妇人河上荡杯.津吏问曰:‘杯何以多?’妇人曰:‘家有客.’津吏曰:‘客几何?’妇人曰:‘二人共饭,三人共羹,四人共肉,凡用杯六十五.’不知客几何?”译文:“2人同吃一碗饭,3人同吃一碗羹,4人同吃一碗肉,共用65个碗,问有多少客人?”
    24.(10分)如图,一位测量人员,要测量池塘的宽度 的长,他过 两点画两条相交于点 的射线,在射线上取两点 ,使 ,若测得 米,他能求出 之间的距离吗?若能,请你帮他算出来;若不能,请你帮他设计一个可行方案.

    25.(10分)已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是  ;以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是   ;△A2B2C2的面积是   平方单位.

    26.(12分)如图,在△OAB中,OA=OB,C为AB中点,以O为圆心,OC长为半径作圆,AO与⊙O交于点E,OB与⊙O交于点F和D,连接EF,CF,CF与OA交于点G
    (1)求证:直线AB是⊙O的切线;
    (2)求证:△GOC∽△GEF;
    (3)若AB=4BD,求sinA的值.

    27.(12分)某市对城区部分路段的人行道地砖、绿化带、排水管等公用设施进行全面更新改造,根据市政建设的需要,需在35天内完成工程.现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的2倍,若甲、乙两工程队合作,只需10天完成.甲、乙两个工程队单独完成此项工程各需多少天?若甲工程队每天的工程费用是4万元,乙工程队每天的工程费用是2.5万元,请你设计一种方案,既能按时完工,又能使工程费用最少.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、D
    【解析】
    设直线y=x与BC交于E点,分别过A、E两点作x轴的垂线,垂足为D、F,则A(1,1),而AB=AC=2,则B(3,1),△ABC为等腰直角三角形,E为BC的中点,由中点坐标公式求E点坐标,当双曲线与△ABC有唯一交点时,这个交点分别为A、E,由此可求出k的取值范围.
    解:∵,..又∵过点,交于点,∴,
    ∴,∴.故选D.

    2、A
    【解析】
    试题分析:由折叠的性质知,CD=DE,BC=BE.
    易求AE及△AED的周长.
    解:由折叠的性质知,CD=DE,BC=BE=7cm.
    ∵AB=10cm,BC=7cm,∴AE=AB﹣BE=3cm.
    △AED的周长=AD+DE+AE=AC+AE=6+3=9(cm).
    故选A.
    点评:本题利用了折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
    3、B
    【解析】
    根据中位线定理得到DE∥BC,DE=BC,从而判定△ADE∽△ABC,然后利用相似三角形的性质求解.
    【详解】
    解:∵D、E分别为△ABC的边AB、AC上的中点,
    ∴DE是△ABC的中位线,
    ∴DE∥BC,DE=BC,
    ∴△ADE∽△ABC,
    ∴△ADE的面积:△ABC的面积==1:4,
    ∴△ADE的面积:四边形BCED的面积=1:3;
    故选B.
    【点睛】
    本题考查三角形中位线定理及相似三角形的判定与性质.
    4、B
    【解析】
    试题分析:如图,如图,过点E作EF∥AB,

    ∵AB∥CD,∴EF∥AB∥CD,
    ∴∠1=∠4,∠3=∠5,
    ∴∠1+∠2+∠3=∠2+∠4+∠5=180°,
    故选B
    5、D
    【解析】
    根据=5,=7,得,因为,则,则=5-7=-2或-5-7=-12.
    故选D.
    6、B
    【解析】
    分别根据同底数幂的乘法及除法法则、幂的乘方与积的乘方法则及合并同类项的法则对各选项进行逐一分析即可.
    【详解】
    A. a3+a4≠a7 ,不是同类项,不能合并,本选项错误;
    B. a4÷a3=a4-3=a;,本选项正确;
    C. a3•a2=a5;,本选项错误;
    D.(a3)3=a9,本选项错误.
    故选B
    【点睛】
    本题考查的是同底数幂的乘法及除法法则、幂的乘方与积的乘方法则及合并同类项的法则等知识,比较简单.
    7、A
    【解析】
    首先设此多边形为n边形,根据题意得:180(n-2)=1080,即可求得n=8,再由多边形的外角和等于360°,即可求得答案.
    【详解】
    设此多边形为n边形,
    根据题意得:180(n-2)=1080,
    解得:n=8,
    ∴这个正多边形的每一个外角等于:360°÷8=45°.
    故选A.
    【点睛】
    此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.
    8、B
    【解析】
    分析:由等腰直角三角形的性质和平行线的性质求出∠ACD=60°,即可得出∠2的度数.
    详解:如图所示:

    ∵△ABC是等腰直角三角形,
    ∴∠BAC=90°,∠ACB=45°,
    ∴∠1+∠BAC=30°+90°=120°,
    ∵a∥b,
    ∴∠ACD=180°-120°=60°,
    ∴∠2=∠ACD-∠ACB=60°-45°=15°;
    故选B.
    点睛:本题考查了平行线的性质、等腰直角三角形的性质;熟练掌握等腰直角三角形的性质,由平行线的性质求出∠ACD的度数是解决问题的关键.
    9、C
    【解析】
    试题分析:根据勾股定理即可得到AB,BC,AC的长度,进行判断即可.
    试题解析:连接AC,如图:

    根据勾股定理可以得到:AC=BC=,AB=.
    ∵()1+()1=()1.
    ∴AC1+BC1=AB1.
    ∴△ABC是等腰直角三角形.
    ∴∠ABC=45°.
    故选C.
    考点:勾股定理.
    10、B
    【解析】
    ∵(±9)2=81,
    ∴±±9.
    故选B.
    11、C
    【解析】
    根据正方形的每一个角都是直角可得∠BCD=90°,再根据旋转的性质求出∠ECF=∠BCD=90°,CE=CF,然后求出△CEF是等腰直角三角形,然后根据等腰直角三角形的性质解答.
    【详解】
    ∵四边形ABCD是正方形,
    ∴∠BCD=90°,
    ∵△BEC绕点C旋转至△DFC的位置,
    ∴∠ECF=∠BCD=90°,CE=CF,
    ∴△CEF是等腰直角三角形,
    ∴∠EFC=45°.
    故选:C.
    【点睛】
    本题目是一道考查旋转的性质问题——每对对应点到旋转中心的连线的夹角都等于旋转角度,每对对应边相等,故 为等腰直角三角形.
    12、D
    【解析】
    解:按从小到大的顺序排列小明5次投球的成绩:7.5,7.8,8.2,8.1,8.1.
    其中8.1出现1次,出现次数最多,8.2排在第三,
    ∴这组数据的众数与中位数分别是:8.1,8.2.
    故选D.
    【点睛】
    本题考查众数;中位数.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、110
    【解析】
    试题解析:解:∵∠C=40°,CA=CB,
    ∴∠A=∠ABC=70°,
    ∴∠ABD=∠A+∠C=110°.
    考点:等腰三角形的性质、三角形外角的性质
    点评:本题主要考查了等腰三角形的性质、三角形外角的性质.等腰三角形的两个底角相等;三角形的外角等于与它不相邻的两个内角之和.
    14、
    【解析】
    由勾股定理可先求得AM,利用条件可证得△ABM∽△EMA,则可求得AE的长,进一步可求得DE.
    【详解】
    详解:∵正方形ABCD,
    ∴∠B=90°.
    ∵AB=12,BM=5,
    ∴AM=1.
    ∵ME⊥AM,
    ∴∠AME=90°=∠B.
    ∵∠BAE=90°,
    ∴∠BAM+∠MAE=∠MAE+∠E,
    ∴∠BAM=∠E,
    ∴△ABM∽△EMA,
    ∴=,即=,
    ∴AE=,
    ∴DE=AE﹣AD=﹣12=.
    故答案为.
    【点睛】
    本题主要考查相似三角形的判定和性质,利用条件证得△ABM∽△EMA是解题的关键.
    15、
    【解析】
    试题分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,
    先提取公因式后继续应用平方差公式分解即可:.
    16、1.
    【解析】
    试题分析:由BC的垂直平分线交AB于点D,可得CD=BD=6,又由等边对等角,可求得∠BCD的度数,继而求得∠ADC的度数,则可判定△ACD是等腰三角形,继而求得答案.
    试题解析:∵BC的垂直平分线交AB于点D,
    ∴CD=BD=6,
    ∴∠DCB=∠B=40°,
    ∴∠ADC=∠B+∠BCD=80°,
    ∴∠ADC=∠A=80°,
    ∴AC=CD=6,
    ∴△ADC的周长为:AD+DC+AC=2+6+6=1.
    考点:1.线段垂直平分线的性质;2.等腰三角形的判定与性质.
    17、-1
    【解析】
    试题分析:根据一次函数的图象经过第二、三、四象限,可以得出k<1,b<1,随便写出一个小于1的b值即可.∵一次函数y=﹣2x+b(b为常数)的图象经过第二、三、四象限, ∴k<1,b<1.
    考点:一次函数图象与系数的关系
    18、0或-1。
    【解析】由于没有交待是二次函数,故应分两种情况:
    当k=0时,函数是一次函数,与x轴仅有一个公共点。
    当k≠0时,函数是二次函数,若函数与x轴仅有一个公共点,则有两个相等的实数根,即。
    综上所述,若关于x的函数与x轴仅有一个公共点,则实数k的值为0或-1。

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)y=﹣x2+2x+3;(2)d=﹣t2+4t﹣3;(3)P(,).
    【解析】
    (1)由抛物线y=ax2+bx+3与y轴交于点A,可求得点A的坐标,又OA=OC,可求得点C的坐标,然后分别代入B,C的坐标求出a,b,即可求得二次函数的解析式;
    (2)首先延长PE交x轴于点H,现将解析式换为顶点解析式求得D(1,4),设直线CD的解析式为y=kx+b,再将点C(3,0)、D(1,4)代入,得y=﹣2x+6,则E(t,﹣2t+6),P(t,﹣t2+2t+3),PH=﹣t2+2t+3,EH=﹣2t+6,再根据d=PH﹣EH即可得答案;
    (3)首先,作DK⊥OC于点K,作QM∥x轴交DK于点T,延长PE、EP交OC于H、交QM于M,作ER⊥DK于点R,记QE与DK的交点为N,根据题意在(2)的条件下先证明△DQT≌△ECH,再根据全等三角形的性质即可得ME=4﹣2(﹣2t+6),QM= t﹣1+(3﹣t),即可求得答案.
    【详解】
    解:(1)当x=0时,y=3,
    ∴A(0,3)即OA=3,
    ∵OA=OC,
    ∴OC=3,
    ∴C(3,0),
    ∵抛物线y=ax2+bx+3经过点B(﹣1,0),C(3,0)
    ∴,
    解得:,
    ∴抛物线的解析式为:y=﹣x2+2x+3;
    (2)如图1,延长PE交x轴于点H,

    ∵y=﹣x2+2x+3=﹣(x﹣1)2+4,
    ∴D(1,4),
    设直线CD的解析式为y=kx+b,
    将点C(3,0)、D(1,4)代入,得: ,
    解得:,
    ∴y=﹣2x+6,
    ∴E(t,﹣2t+6),P(t,﹣t2+2t+3),
    ∴PH=﹣t2+2t+3,EH=﹣2t+6,
    ∴d=PH﹣EH=﹣t2+2t+3﹣(﹣2t+6)=﹣t2+4t﹣3;
    (3)如图2,作DK⊥OC于点K,作QM∥x轴交DK于点T,延长PE、EP交OC于H、交QM于M,作ER⊥DK于点R,记QE与DK的交点为N,

    ∵D(1,4),B(﹣1,0),C(3,0),
    ∴BK=2,KC=2,
    ∴DK垂直平分BC,
    ∴BD=CD,
    ∴∠BDK=∠CDK,
    ∵∠BQE=∠QDE+∠DEQ,∠BQE+∠DEQ=90°,
    ∴∠QDE+∠DEQ+∠DEQ=90°,即2∠CDK+2∠DEQ=90°,
    ∴∠CDK+∠DEQ=45°,即∠RNE=45°,
    ∵ER⊥DK,
    ∴∠NER=45°,
    ∴∠MEQ=∠MQE=45°,
    ∴QM=ME,
    ∵DQ=CE,∠DTQ=∠EHC、∠QDT=∠CEH,
    ∴△DQT≌△ECH,
    ∴DT=EH,QT=CH,
    ∴ME=4﹣2(﹣2t+6),
    QM=MT+QT=MT+CH=t﹣1+(3﹣t),
    4﹣2(﹣2t+6)=t﹣1+(3﹣t),
    解得:t=,
    ∴P(,).
    【点睛】
    本题考查了二次函数的综合题,解题的关键是熟练的掌握二次函数的相关知识点.
    20、(1)证明见解析;(2)证明见解析;(1)①BC=4;②
    【解析】
    分析:(1)由菱形知∠D=∠BEC,由∠A+∠D=∠BEC+∠AEC=180°可得∠A=∠AEC,据此得证;
    (2)以点C为圆心,CE长为半径作⊙C,与BC交于点F,于BC延长线交于点G,则CF=CG=AC=CE=CD,证△BEF∽△BGA得,即BF•BG=BE•AB,将BF=BC-CF=BC-AC、BG=BC+CG=BC+AC代入可得;
    (1)①设AB=5k、AC=1k,由BC2-AC2=AB•AC知BC=2k,连接ED交BC于点M,Rt△DMC中由DC=AC=1k、MC=BC=k求得DM==k,可知OM=OD-DM=1-k,在Rt△COM中,由OM2+MC2=OC2可得答案.②设OM=d,则MD=1-d,MC2=OC2-OM2=9-d2,继而知BC2=(2MC)2=16-4d2、AC2=DC2=DM2+CM2=(1-d)2+9-d2,由(2)得AB•AC=BC2-AC2,据此得出关于d的二次函数,利用二次函数的性质可得答案.
    详解:(1)∵四边形EBDC为菱形,
    ∴∠D=∠BEC,
    ∵四边形ABDC是圆的内接四边形,
    ∴∠A+∠D=180°,
    又∠BEC+∠AEC=180°,
    ∴∠A=∠AEC,
    ∴AC=CE;
    (2)以点C为圆心,CE长为半径作⊙C,与BC交于点F,于BC延长线交于点G,则CF=CG,

    由(1)知AC=CE=CD,
    ∴CF=CG=AC,
    ∵四边形AEFG是⊙C的内接四边形,
    ∴∠G+∠AEF=180°,
    又∵∠AEF+∠BEF=180°,
    ∴∠G=∠BEF,
    ∵∠EBF=∠GBA,
    ∴△BEF∽△BGA,
    ∴,即BF•BG=BE•AB,
    ∵BF=BC﹣CF=BC﹣AC、BG=BC+CG=BC+AC,BE=CE=AC,
    ∴(BC﹣AC)(BC+AC)=AB•AC,即BC2﹣AC2=AB•AC;
    (1)设AB=5k、AC=1k,
    ∵BC2﹣AC2=AB•AC,
    ∴BC=2k,
    连接ED交BC于点M,
    ∵四边形BDCE是菱形,
    ∴DE垂直平分BC,
    则点E、O、M、D共线,
    在Rt△DMC中,DC=AC=1k,MC=BC=k,
    ∴DM=,
    ∴OM=OD﹣DM=1﹣k,
    在Rt△COM中,由OM2+MC2=OC2得(1﹣k)2+(k)2=12,
    解得:k=或k=0(舍),
    ∴BC=2k=4;
    ②设OM=d,则MD=1﹣d,MC2=OC2﹣OM2=9﹣d2,
    ∴BC2=(2MC)2=16﹣4d2,
    AC2=DC2=DM2+CM2=(1﹣d)2+9﹣d2,
    由(2)得AB•AC=BC2﹣AC2
    =﹣4d2+6d+18
    =﹣4(d﹣)2+,
    ∴当d=,即OM=时,AB•AC最大,最大值为,
    ∴DC2=,
    ∴AC=DC=,
    ∴AB=,此时.
    点睛:本题主要考查圆的综合问题,解题的关键是掌握圆的有关性质、圆内接四边形的性质及菱形的性质、相似三角形的判定与性质、二次函数的性质等知识点.
    21、(1)详见解析;(2) ;(3).
    【解析】
    (1)只要证明∠ACB=∠E,∠ABC=∠BDE即可;
    (2)首先证明BE:DE:BC=1:2:4,由△GCB∽△GDF,可得=;
    (3)想办法证明AB垂直平分CF即可解决问题.
    【详解】
    (1)证明:如图1中,

    ∵DE⊥CB,
    ∴∠ACB=∠E=90°,
    ∵BD是切线,
    ∴AB⊥BD,
    ∴∠ABD=90°,
    ∴∠ABC+∠DBE=90°,∠BDE+∠DBE=90°,
    ∴∠ABC=∠BDE,
    ∴△ACB∽△BED;
    (2)解:如图2中,

    ∵△ACB∽△BED;四边形ACED是矩形,
    ∴BE:DE:BC=1:2:4,
    ∵DF∥BC,
    ∴△GCB∽△GDF,
    ∴=;
    (3)解:如图3中,

    ∵tan∠ABC==,AC=2,
    ∴BC=4,BE=4,DE=8,AB=2,BD=4,
    易证△DBE≌△DBF,可得BF=4=BC,
    ∴AC=AF=2,
    ∴CF⊥AB,设CF交AB于H,
    则CF=2CH=2×.
    【点睛】
    本题考查相似三角形的判定和性质、圆周角定理、切线的性质、解直角三角形、线段的垂直平分线的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,所以中考常考题型.
    22、见解析
    【解析】
    根据题意:一边为x米,面积为4,则另一边为米,篱笆长为y=2(x)=2x,由x═()2+4可得当x=2,y有最小值,则可求篱笆长.
    【详解】
    根据题意:一边为x米,面积为4,则另一边为米,篱笆长为y=2(x)=2x
    ∵x()2+()2=()2+4,∴x4,∴2x1,∴当x=2时,y有最小值为1,由此小强确定篱笆长至少为1米.
    故答案为:y=2x,2,1.
    【点睛】
    本题考查了反比例函数的应用,完全平方公式的运用,关键是熟练运用完全平方公式.
    23、x=60
    【解析】
    设有x个客人,根据题意列出方程,解出方程即可得到答案.
    【详解】
    解:设有x个客人,则

    解得:x=60;
    ∴有60个客人.
    【点睛】
    本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.
    24、可以求出A、B之间的距离为111.6米.
    【解析】
    根据,(对顶角相等),即可判定,根据相似三角形的性质得到,即可求解.
    【详解】
    解:∵,(对顶角相等),
    ∴,
    ∴,
    ∴,
    解得米.
    所以,可以求出、之间的距离为米
    【点睛】
    考查相似三角形的应用,掌握相似三角形的判定方法和性质是解题的关键.
    25、(1)(2,﹣2);
    (2)(1,0);
    (3)1.

    【解析】
    试题分析:(1)根据平移的性质得出平移后的图从而得到点的坐标;
    (2)根据位似图形的性质得出对应点位置,从而得到点的坐标;
    (3)利用等腰直角三角形的性质得出△A2B2C2的面积.
    试题解析:(1)如图所示:C1(2,﹣2);
    故答案为(2,﹣2);
    (2)如图所示:C2(1,0);
    故答案为(1,0);
    (3)∵=20,=20,=40,
    ∴△A2B2C2是等腰直角三角形,
    ∴△A2B2C2的面积是:××=1平方单位.
    故答案为1.

    考点:1、平移变换;2、位似变换;3、勾股定理的逆定理
    26、 (1)见解析;(2)见解析;(3).
    【解析】
    (1)利用等腰三角形的性质,证明OC⊥AB即可;
    (2)证明OC∥EG,推出△GOC∽△GEF即可解决问题;
    (3)根据勾股定理和三角函数解答即可.
    【详解】
    证明:(1)∵OA=OB,AC=BC,
    ∴OC⊥AB,
    ∴⊙O是AB的切线.
    (2)∵OA=OB,AC=BC,
    ∴∠AOC=∠BOC,
    ∵OE=OF,
    ∴∠OFE=∠OEF,
    ∵∠AOB=∠OFE+∠OEF,
    ∴∠AOC=∠OEF,
    ∴OC∥EF,
    ∴△GOC∽△GEF,
    ∴,
    ∵OD=OC,
    ∴OD•EG=OG•EF.
    (3)∵AB=4BD,
    ∴BC=2BD,设BD=m,BC=2m,OC=OD=r,
    在Rt△BOC中,∵OB2=OC2+BC2,
    即(r+m)2=r2+(2m)2,
    解得:r=1.5m,OB=2.5m,
    ∴sinA=sinB=.
    【点睛】
    考查圆的综合题,考查切线的判定、等腰三角形的性质、平行线的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题.
    27、(1)甲工程队单独完成该工程需15天,则乙工程队单独完成该工程需30天;(2)应该选择甲工程队承包该项工程.
    【解析】
    (1)设甲工程队单独完成该工程需x天,则乙工程队单独完成该工程需2x天.再根据“甲、乙两队合作完成工程需要10天”,列出方程解决问题;
    (2)首先根据(1)中的结果,从而可知符合要求的施工方案有三种:方案一:由甲工程队单独完成;方案二:由乙工程队单独完成;方案三:由甲乙两队合作完成.针对每一种情况,分别计算出所需的工程费用.
    【详解】
    (1)设甲工程队单独完成该工程需天,则乙工程队单独完成该工程需天.
    根据题意得:
    方程两边同乘以,得
    解得:
    经检验,是原方程的解.
    ∴当时,.
    答:甲工程队单独完成该工程需15天,则乙工程队单独完成该工程需30天.
    (2)因为甲乙两工程队均能在规定的35天内单独完成,所以有如下三种方案:
    方案一:由甲工程队单独完成.所需费用为:(万元);
    方案二:由乙工程队单独完成.所需费用为:(万元);
    方案三:由甲乙两队合作完成.所需费用为:(万元).
    ∵∴应该选择甲工程队承包该项工程.
    【点睛】
    本题考查分式方程在工程问题中的应用.分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.

    相关试卷

    2023年辽宁省大连市名校联盟中考数学最后一练(含解析): 这是一份2023年辽宁省大连市名校联盟中考数学最后一练(含解析),共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年辽宁省大连市八区民间联盟中考数学二模试卷(含解析): 这是一份2023年辽宁省大连市八区民间联盟中考数学二模试卷(含解析),共23页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。

    2023年辽宁省大连市高新园区名校联盟中考数学模拟试卷(4月份)(含解析): 这是一份2023年辽宁省大连市高新园区名校联盟中考数学模拟试卷(4月份)(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map