


还剩19页未读,
继续阅读
廊坊三中2021-2022学年中考数学押题卷含解析
展开
这是一份廊坊三中2021-2022学年中考数学押题卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,下列算式中,结果等于x6的是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图,在▱ABCD中,∠DAB的平分线交CD于点E,交BC的延长线于点G,∠ABC的平分线交CD于点F,交AD的延长线于点H,AG与BH交于点O,连接BE,下列结论错误的是( )
A.BO=OH B.DF=CE C.DH=CG D.AB=AE
2.如图由四个相同的小立方体组成的立体图像,它的主视图是( ).
A. B. C. D.
3.如图,矩形ABCD中,AB=3,AD=4,连接BD,∠DBC的角平分线BE交DC于点E,现把△BCE绕点B逆时针旋转,记旋转后的△BCE为△BC′E′.当线段BE′和线段BC′都与线段AD相交时,设交点分别为F,G.若△BFD为等腰三角形,则线段DG长为( )
A. B. C. D.
4.已知反比例函数,下列结论不正确的是( )
A.图象经过点(﹣2,1) B.图象在第二、四象限
C.当x<0时,y随着x的增大而增大 D.当x>﹣1时,y>2
5.下列四个图形分别是四届国际数学家大会的会标,其中属于中心对称图形的有( )
A.1个 B.2个 C.3个 D.4个
6.河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1:,则AB的长为
A.12米 B.4米 C.5米 D.6米
7.若式子在实数范围内有意义,则 x的取值范围是( )
A.x>1 B.x>﹣1 C.x≥1 D.x≥﹣1
8.如图,△ABC内接于半径为5的⊙O,圆心O到弦BC的距离等于3,则∠A的正切值等于( )
A. B. C. D.
9.下列算式中,结果等于x6的是( )
A.x2•x2•x2 B.x2+x2+x2 C.x2•x3 D.x4+x2
10.关于反比例函数y=,下列说法中错误的是( )
A.它的图象是双曲线
B.它的图象在第一、三象限
C.y的值随x的值增大而减小
D.若点(a,b)在它的图象上,则点(b,a)也在它的图象上
二、填空题(共7小题,每小题3分,满分21分)
11.如图,以锐角△ABC的边AB为直径作⊙O,分别交AC,BC于E、D两点,若AC=14,CD=4,7sinC=3tanB,则BD=_____.
12.“复兴号”是我国具有完全自主知识产权、达到世界先进水平的动车组列车.“复兴号”的速度比原来列车的速度每小时快50千米,提速后从北京到上海运行时间缩短了30分钟.已知从北京到上海全程约1320千米,求“复兴号”的速度.设“复兴号”的速度为x千米/时,依题意,可列方程为__.
13.一元二次方程x2=3x的解是:________.
14.的算术平方根是_____.
15.如图,在△ABC 中,AB=AC,BC=8. 是△ABC的外接圆,其半径为5. 若点A在优弧BC上,则的值为_____________.
16.在直角三角形ABC中,∠C=90°,已知sinA=,则cosB=_______.
17.写出一个平面直角坐标系中第三象限内点的坐标:(__________)
三、解答题(共7小题,满分69分)
18.(10分)如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B(3,0),与y轴交于点C(0,3),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接DB.
(1)求此抛物线的解析式及顶点D的坐标;
(2)点M是抛物线上的动点,设点M的横坐标为m.
①当∠MBA=∠BDE时,求点M的坐标;
②过点M作MN∥x轴,与抛物线交于点N,P为x轴上一点,连接PM,PN,将△PMN沿着MN翻折,得△QMN,若四边形MPNQ恰好为正方形,直接写出m的值.
19.(5分)如图1,AB为半圆O的直径,D为BA的延长线上一点,DC为半圆O的切线,切点为C.
(1)求证:∠ACD=∠B;
(2)如图2,∠BDC的平分线分别交AC,BC于点E,F,求∠CEF的度数.
20.(8分)如图,对称轴为直线x=的抛物线经过点A(6,0)和B(0,4).
(1)求抛物线解析式及顶点坐标;
(2)设点E(x,y)是抛物线上一动点,且位于第四象限,四边形OEAF是以OA为对角线的平行四边形,求四边形OEAF的面积S与x之间的函数关系式,并写出自变量x的取值范围;
(3)①当四边形OEAF的面积为24时,请判断OEAF是否为菱形?
②是否存在点E,使四边形OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.
21.(10分)已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE = AF.
求证:BE = DF;连接AC交EF于点O,延长OC至点M,使OM = OA,连接EM、FM.判断四边形AEMF是什么特殊四边形?并证明你的结论.
22.(10分)如图,AD是△ABC的中线,过点C作直线CF∥AD.
(问题)如图①,过点D作直线DG∥AB交直线CF于点E,连结AE,求证:AB=DE.
(探究)如图②,在线段AD上任取一点P,过点P作直线PG∥AB交直线CF于点E,连结AE、BP,探究四边形ABPE是哪类特殊四边形并加以证明.
(应用)在探究的条件下,设PE交AC于点M.若点P是AD的中点,且△APM的面积为1,直接写出四边形ABPE的面积.
23.(12分)某高校学生会在某天午餐后,随机调查了部分同学就餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.
(1)这次被调查的同学共有名;
(2)补全条形统计图;
(3)计算在扇形统计图中剩大量饭菜所对应扇形圆心角的度数;
(4)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校20000名学生一餐浪费的食物可供多少人食用一餐?
24.(14分)某同学用两个完全相同的直角三角形纸片重叠在一起(如图1)固定△ABC不动,将△DEF沿线段AB向右平移.
(1)若∠A=60°,斜边AB=4,设AD=x(0≤x≤4),两个直角三角形纸片重叠部分的面积为y,试求出y与x的函数关系式;
(2)在运动过程中,四边形CDBF能否为正方形,若能,请指出此时点D的位置,并说明理由;若不能,请你添加一个条件,并说明四边形CDBF为正方形?
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
解:∵四边形ABCD是平行四边形,∴AH∥BG,AD=BC,∴∠H=∠HBG.∵∠HBG=∠HBA,∴∠H=∠HBA,∴AH=AB.
同理可证BG=AB,∴AH=BG.∵AD=BC,∴DH=CG,故C正确.
∵AH=AB,∠OAH=∠OAB,∴OH=OB,故A正确.
∵DF∥AB,∴∠DFH=∠ABH.∵∠H=∠ABH,∴∠H=∠DFH,∴DF=DH.
同理可证EC=CG.
∵DH=CG,∴DF=CE,故B正确.
无法证明AE=AB,故选D.
2、D
【解析】
从正面看,共2列,左边是1个正方形,
右边是2个正方形,且下齐.
故选D.
3、A
【解析】
先在Rt△ABD中利用勾股定理求出BD=5,在Rt△ABF中利用勾股定理求出BF=,则AF=4-=.再过G作GH∥BF,交BD于H,证明GH=GD,BH=GH,设DG=GH=BH=x,则FG=FD-GD=-x,HD=5-x,由GH∥FB,得出=,即可求解.
【详解】
解:在Rt△ABD中,∵∠A=90°,AB=3,AD=4,
∴BD=5,
在Rt△ABF中,∵∠A=90°,AB=3,AF=4-DF=4-BF,
∴BF2=32+(4-BF)2,
解得BF=,
∴AF=4-=.
过G作GH∥BF,交BD于H,
∴∠FBD=∠GHD,∠BGH=∠FBG,
∵FB=FD,
∴∠FBD=∠FDB,
∴∠FDB=∠GHD,
∴GH=GD,
∵∠FBG=∠EBC=∠DBC=∠ADB=∠FBD,
又∵∠FBG=∠BGH,∠FBG=∠GBH,
∴BH=GH,
设DG=GH=BH=x,则FG=FD-GD=-x,HD=5-x,
∵GH∥FB,
∴ =,即=,
解得x=.
故选A.
【点睛】
本题考查了旋转的性质,矩形的性质,等腰三角形的性质,勾股定理,平行线分线段成比例定理,准确作出辅助线是解题关键.
4、D
【解析】
A选项:把(-2,1)代入解析式得:左边=右边,故本选项正确;
B选项:因为-2<0,图象在第二、四象限,故本选项正确;
C选项:当x<0,且k<0,y随x的增大而增大,故本选项正确;
D选项:当x>0时,y<0,故本选项错误.
故选D.
5、B
【解析】
解:根据中心对称的概念可得第一个图形是中心对称图形,第二个图形不是中心对称图形,第三个图形是中心对称图形,第四个图形不是中心对称图形,所以,中心对称图有2个.
故选B.
【点睛】
本题考查中心对称图形的识别,掌握中心对称图形的概念是本题的解题关键.
6、A
【解析】
试题分析:在Rt△ABC中,BC=6米,,∴AC=BC×=6(米).
∴(米).故选A.
【详解】
请在此输入详解!
7、A
【解析】
直接利用二次根式有意义的条件分析得出答案.
【详解】
∵式子在实数范围内有意义,
∴ x﹣1>0, 解得:x>1.
故选:A.
【点睛】
此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.
8、C.
【解析】
试题分析:如答图,过点O作OD⊥BC,垂足为D,连接OB,OC,
∵OB=5,OD=3,∴根据勾股定理得BD=4.
∵∠A=∠BOC,∴∠A=∠BOD.
∴tanA=tan∠BOD=.
故选D.
考点:1.垂径定理;2.圆周角定理;3.勾股定理;4.锐角三角函数定义.
9、A
【解析】试题解析:A、x2•x2•x2=x6,故选项A符合题意;
B、x2+x2+x2=3x2,故选项B不符合题意;
C、x2•x3=x5,故选项C不符合题意;
D、x4+x2,无法计算,故选项D不符合题意.
故选A.
10、C
【解析】
根据反比例函数y=的图象上点的坐标特征,以及该函数的图象的性质进行分析、解答.
【详解】
A.反比例函数的图像是双曲线,正确;
B.k=2>0,图象位于一、三象限,正确;
C.在每一象限内,y的值随x的增大而减小,错误;
D.∵ab=ba,∴若点(a,b)在它的图像上,则点(b,a)也在它的图像上,故正确.
故选C.
【点睛】
本题主要考查反比例函数的性质.注意:反比例函数的增减性只指在同一象限内.
二、填空题(共7小题,每小题3分,满分21分)
11、1
【解析】
如图,连接AD,根据圆周角定理可得AD⊥BC.在Rt△ADC中,sinC= ;在Rt△ABD中,tanB=.已知7sinC=3tanB,所以7×=3×,又因AC=14,即可求得BD=1.
点睛:此题主要考查的是圆周角定理和锐角三角函数的定义,以公共边AD为桥梁,利用锐角三角函数的定义得到tanB和sinC的式子是解决问题的关键.
12、
【解析】
设“复兴号”的速度为x千米/时,则原来列车的速度为(x-50)千米/时,根据提速后从北京到上海运行时间缩短了30分钟列出方程即可.
【详解】
设“复兴号”的速度为x千米/时,则原来列车的速度为(x-50)千米/时,
根据题意得.
故答案为.
【点睛】
本题主要考查由实际问题抽象出分式方程,解题的关键是理解题意,找到题目蕴含的相等关系.
13、x1=0,x2=1
【解析】
先移项,然后利用因式分解法求解.
【详解】
x2=1x
x2-1x=0,
x(x-1)=0,
x=0或x-1=0,
∴x1=0,x2=1.
故答案为:x1=0,x2=1
【点睛】
本题考查了解一元二次方程-因式分解法:先把方程右边变形为0,再把方程左边分解为两个一次式的乘积,这样原方程转化为两个一元一次方程,然后解一次方程即可得到一元二次方程的解
14、
【解析】
∵=8,()2=8,
∴的算术平方根是.
故答案为:.
15、2
【解析】
【分析】作高线AD,由等腰三角形的性质可知D为BC的中点,即AD为BC的垂直平分线,根据垂径定理,AD过圆心O,由BC的长可得出BD的长,根据勾股定理求出半径,继而可得AD的长,在直角三角形ABD中根据正切的定义求解即可.
试题解析:如图,作AD⊥BC,垂足为D,连接OB,
∵AB=AC,∴BD=CD=BC=×8=4,
∴AD垂直平分BC,
∴AD过圆心O,
在Rt△OBD中,OD==3,
∴AD=AO+OD=8,
在Rt△ABD中,tan∠ABC==2,
故答案为2.
【点睛】本题考查了垂径定理、等腰三角形的性质、正切的定义等知识,综合性较强,正确添加辅助线构造直角三角形进行解题是关键.
16、.
【解析】
试题分析:解答此题要利用互余角的三角函数间的关系:sin(90°-α)=cosα,cos(90°-α)=sinα.
试题解析:∵在△ABC中,∠C=90°,
∴∠A+∠B=90°,
∴cosB=sinA=.
考点:互余两角三角函数的关系.
17、答案不唯一,如:(﹣1,﹣1),横坐标和纵坐标都是负数即可.
【解析】
让横坐标、纵坐标为负数即可.
【详解】
在第三象限内点的坐标为:(﹣1,﹣1)(答案不唯一).
故答案为答案不唯一,如:(﹣1,﹣1),横坐标和纵坐标都是负数即可.
三、解答题(共7小题,满分69分)
18、(1)(1,4)(2)①点M坐标(﹣,)或(﹣,﹣);②m的值为 或
【解析】
(1)利用待定系数法即可解决问题;
(2)①根据tan∠MBA=,tan∠BDE==,由∠MBA=∠BDE,构建方程即可解决问题;②因为点M、N关于抛物线的对称轴对称,四边形MPNQ是正方形,推出点P是抛物线的对称轴与x轴的交点,即OP=1,易证GM=GP,即|-m2+2m+3|=|1-m|,解方程即可解决问题.
【详解】
解:(1)把点B(3,0),C(0,3)代入y=﹣x2+bx+c,
得到,解得,
∴抛物线的解析式为y=﹣x2+2x+3,
∵y=﹣x2+2x﹣1+1+3=﹣(x﹣1)2+4,
∴顶点D坐标(1,4);
(2)①作MG⊥x轴于G,连接BM.则∠MGB=90°,设M(m,﹣m2+2m+3),
∴MG=|﹣m2+2m+3|,BG=3﹣m,
∴tan∠MBA=,
∵DE⊥x轴,D(1,4),
∴∠DEB=90°,DE=4,OE=1,
∵B(3,0),
∴BE=2,
∴tan∠BDE==,
∵∠MBA=∠BDE,
∴=,
当点M在x轴上方时, =,
解得m=﹣或3(舍弃),
∴M(﹣,),
当点M在x轴下方时, =,
解得m=﹣或m=3(舍弃),
∴点M(﹣,﹣),
综上所述,满足条件的点M坐标(﹣,)或(﹣,﹣);
②如图中,∵MN∥x轴,
∴点M、N关于抛物线的对称轴对称,
∵四边形MPNQ是正方形,
∴点P是抛物线的对称轴与x轴的交点,即OP=1,
易证GM=GP,即|﹣m2+2m+3|=|1﹣m|,
当﹣m2+2m+3=1﹣m时,解得m=,
当﹣m2+2m+3=m﹣1时,解得m=,
∴满足条件的m的值为或.
【点睛】
本题考查二次函数综合题、锐角三角函数、正方形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.
19、(1)详见解析;(2)∠CEF=45°.
【解析】
试题分析:(1)连接OC,根据切线的性质和直径所对的圆周角是直角得出∠DCO=∠ACB=90°,然后根据等角的余角相等即可得出结论;
(2)根据三角形的外角的性质证明∠CEF=∠CFE即可求解.
试题解析:
(1)证明:如图1中,连接OC.
∵OA=OC,∴∠1=∠2,
∵CD是⊙O切线,∴OC⊥CD,
∴∠DCO=90°,∴∠3+∠2=90°,
∵AB是直径,∴∠1+∠B=90°,
∴∠3=∠B.
(2)解:∵∠CEF=∠ECD+∠CDE,∠CFE=∠B+∠FDB,
∵∠CDE=∠FDB,∠ECD=∠B,∴∠CEF=∠CFE,
∵∠ECF=90°,
∴∠CEF=∠CFE=45°.
20、(1)抛物线解析式为,顶点为;(2),1<<1;(3)①四边形是菱形;②不存在,理由见解析
【解析】
(1)已知了抛物线的对称轴解析式,可用顶点式二次函数通式来设抛物线,然后将A、B两点坐标代入求解即可.
(2)平行四边形的面积为三角形OEA面积的2倍,因此可根据E点的横坐标,用抛物线的解析式求出E点的纵坐标,那么E点纵坐标的绝对值即为△OAE的高,由此可根据三角形的面积公式得出△AOE的面积与x的函数关系式进而可得出S与x的函数关系式.
(3)①将S=24代入S,x的函数关系式中求出x的值,即可得出E点的坐标和OE,OA的长;如果平行四边形OEAF是菱形,则需满足平行四边形相邻两边的长相等,据此可判断出四边形OEAF是否为菱形.
②如果四边形OEAF是正方形,那么三角形OEA应该是等腰直角三角形,即E点的坐标为(3,﹣3)将其代入抛物线的解析式中即可判断出是否存在符合条件的E点.
【详解】
(1)由抛物线的对称轴是,可设解析式为.
把A、B两点坐标代入上式,得
解之,得
故抛物线解析式为,顶点为
(2)∵点在抛物线上,位于第四象限,且坐标适合
,
∴y<0,即-y>0,-y表示点E到OA的距离.
∵OA是的对角线,
∴.
因为抛物线与轴的两个交点是(1,0)的(1,0),所以,自变量的
取值范围是1<<1.
(3)①根据题意,当S = 24时,即.
化简,得解之,得
故所求的点E有两个,分别为E1(3,-4),E2(4,-4).
点E1(3,-4)满足OE = AE,所以是菱形;
点E2(4,-4)不满足OE = AE,所以不是菱形.
②当OA⊥EF,且OA = EF时,是正方形,
此时点E的坐标只能是(3,-3).
而坐标为(3,-3)的点不在抛物线上,
故不存在这样的点E,使为正方形.
21、(1)证明见解析;(2)四边形AEMF是菱形,证明见解析.
【解析】
(1)求简单的线段相等,可证线段所在的三角形全等,即证△ABE≌△ADF;
(2)由于四边形ABCD是正方形,易得∠ECO=∠FCO=45°,BC=CD;联立(1)的结论,可证得EC=CF,根据等腰三角形三线合一的性质可证得OC(即AM)垂直平分EF;已知OA=OM,则EF、AM互相平分,再根据一组邻边相等的平行四边形是菱形,即可判定四边形AEMF是菱形.
【详解】
(1)证明:∵四边形ABCD是正方形,
∴AB=AD,∠B=∠D=90°,
在Rt△ABE和Rt△ADF中,
∵,
∴Rt△ADF≌Rt△ABE(HL)
∴BE=DF;
(2)四边形AEMF是菱形,理由为:
证明:∵四边形ABCD是正方形,
∴∠BCA=∠DCA=45°(正方形的对角线平分一组对角),
BC=DC(正方形四条边相等),
∵BE=DF(已证),
∴BC-BE=DC-DF(等式的性质),
即CE=CF,
在△COE和△COF中,
,
∴△COE≌△COF(SAS),
∴OE=OF,
又OM=OA,
∴四边形AEMF是平行四边形(对角线互相平分的四边形是平行四边形),
∵AE=AF,
∴平行四边形AEMF是菱形.
22、【问题】:详见解析;【探究】:四边形ABPE是平行四边形,理由详见解析;【应用】:8.
【解析】
(1)先根据平行线的性质和等量代换得出∠1=∠3,再利用中线性质得到BD=DC,证明△ABD≌△EDC,从而证明AB=DE(2)方法一:过点D作DN∥PE交直线CF于点N,由平行线性质得出四边形PDNE是平行四边形,从而得到四边形ABPE是平行四边形.方法二: 延长BP交直线CF于点N,根据平行线的性质结合等量代换证明△ABP≌△EPN,
从而证明四边形ABPE是平行四边形(3)延长BP交CF于H,根据平行四边形的性质结合三角形的面积公式求解即可.
【详解】
证明:如图①
是的中线,
(或证明四边形ABDE是平行四边形,从而得到)
【探究】
四边形ABPE是平行四边形.
方法一:如图②,
证明:过点D作交直线于点,
∴四边形是平行四边形,
∵由问题结论可得
∴四边形是平行四边形.
方法二:如图③,
证明:延长BP交直线CF于点N,
∵是的中线,
∴四边形是平行四边形.
【应用】
如图④,延长BP交CF于H.
由上面可知,四边形是平行四边形,
∴四边形APHE是平行四边形,
,
【点睛】
此题重点考查学生对平行线性质,平行四边形性质的综合应用能力,熟练掌握平行线的性质是解题的关键.
23、(1)1000 (2)200 (3)54° (4)4000人
【解析】
试题分析:(1)根据没有剩饭的人数是400人,所占的百分比是40%,据此即可求得调查的总人数;
(2)利用(1)中求得结果减去其它组的人数即可求得剩少量饭的人数,从而补全直方图;
(3)利用360°乘以对应的比例即可求解;
(4)利用20000除以调查的总人数,然后乘以200即可求解.
试题解析:(1)被调查的同学的人数是400÷40%=1000(名);
(2)剩少量的人数是1000-400-250-150=200(名),
;
(3)在扇形统计图中剩大量饭菜所对应扇形圆心角的度数是:360°×=54°;
(4)×200=4000(人).
答:校20000名学生一餐浪费的食物可供4000人食用一餐.
【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
24、(1)y=(0≤x≤4);(2) 不能为正方形,添加条件:AC=BC时,当点D运动到AB中点位置时四边形CDBF为正方形.
【解析】
分析:(1)根据平移的性质得到DF∥AC,所以由平行线的性质、勾股定理求得GD=,BG==,所以由三角形的面积公式列出函数关系式;(2)不能为正方形,添加条件:AC=BC时,点D运动到AB中点时,四边形CDBF为正方形;当D运动到AB中点时,四边形CDBF是菱形,根据“直角三角形斜边上的中线等于斜边的一半”推知CD=AB,BF=DE,所以AD=CD=BD=CF,又有BE=AD,则CD=BD=BF=CF,故四边形CDBF是菱形,根据有一内角为直角的菱形是正方形来添加条件.
详解:(1)如图(1)
∵DF∥AC,
∴∠DGB=∠C=90°,∠GDB=∠A=60°,∠GBD=30°
∵BD=4﹣x,
∴GD=,BG==
y=S△BDG=××=(0≤x≤4);
(2)不能为正方形,添加条件:AC=BC时,当点D运动到AB中点位置时四边形CDBF为正方形.
∵∠ACB=∠DFE=90°,D是AB的中点
∴CD=AB,BF=DE,
∴CD=BD=BF=BE,
∵CF=BD,
∴CD=BD=BF=CF,
∴四边形CDBF是菱形;
∵AC=BC,D是AB的中点.
∴CD⊥AB即∠CDB=90°
∵四边形CDBF为菱形,
∴四边形CDBF是正方形.
点睛:本题是几何变换综合题型,主要考查了平移变换的性质,勾股定理,正方形的判定,菱形的判定与性质以及直角三角形斜边上的中线.(2)难度稍大,根据三角形斜边上的中线推知CD=BD=BF=BE是解题的关键.
2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图,在▱ABCD中,∠DAB的平分线交CD于点E,交BC的延长线于点G,∠ABC的平分线交CD于点F,交AD的延长线于点H,AG与BH交于点O,连接BE,下列结论错误的是( )
A.BO=OH B.DF=CE C.DH=CG D.AB=AE
2.如图由四个相同的小立方体组成的立体图像,它的主视图是( ).
A. B. C. D.
3.如图,矩形ABCD中,AB=3,AD=4,连接BD,∠DBC的角平分线BE交DC于点E,现把△BCE绕点B逆时针旋转,记旋转后的△BCE为△BC′E′.当线段BE′和线段BC′都与线段AD相交时,设交点分别为F,G.若△BFD为等腰三角形,则线段DG长为( )
A. B. C. D.
4.已知反比例函数,下列结论不正确的是( )
A.图象经过点(﹣2,1) B.图象在第二、四象限
C.当x<0时,y随着x的增大而增大 D.当x>﹣1时,y>2
5.下列四个图形分别是四届国际数学家大会的会标,其中属于中心对称图形的有( )
A.1个 B.2个 C.3个 D.4个
6.河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1:,则AB的长为
A.12米 B.4米 C.5米 D.6米
7.若式子在实数范围内有意义,则 x的取值范围是( )
A.x>1 B.x>﹣1 C.x≥1 D.x≥﹣1
8.如图,△ABC内接于半径为5的⊙O,圆心O到弦BC的距离等于3,则∠A的正切值等于( )
A. B. C. D.
9.下列算式中,结果等于x6的是( )
A.x2•x2•x2 B.x2+x2+x2 C.x2•x3 D.x4+x2
10.关于反比例函数y=,下列说法中错误的是( )
A.它的图象是双曲线
B.它的图象在第一、三象限
C.y的值随x的值增大而减小
D.若点(a,b)在它的图象上,则点(b,a)也在它的图象上
二、填空题(共7小题,每小题3分,满分21分)
11.如图,以锐角△ABC的边AB为直径作⊙O,分别交AC,BC于E、D两点,若AC=14,CD=4,7sinC=3tanB,则BD=_____.
12.“复兴号”是我国具有完全自主知识产权、达到世界先进水平的动车组列车.“复兴号”的速度比原来列车的速度每小时快50千米,提速后从北京到上海运行时间缩短了30分钟.已知从北京到上海全程约1320千米,求“复兴号”的速度.设“复兴号”的速度为x千米/时,依题意,可列方程为__.
13.一元二次方程x2=3x的解是:________.
14.的算术平方根是_____.
15.如图,在△ABC 中,AB=AC,BC=8. 是△ABC的外接圆,其半径为5. 若点A在优弧BC上,则的值为_____________.
16.在直角三角形ABC中,∠C=90°,已知sinA=,则cosB=_______.
17.写出一个平面直角坐标系中第三象限内点的坐标:(__________)
三、解答题(共7小题,满分69分)
18.(10分)如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B(3,0),与y轴交于点C(0,3),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接DB.
(1)求此抛物线的解析式及顶点D的坐标;
(2)点M是抛物线上的动点,设点M的横坐标为m.
①当∠MBA=∠BDE时,求点M的坐标;
②过点M作MN∥x轴,与抛物线交于点N,P为x轴上一点,连接PM,PN,将△PMN沿着MN翻折,得△QMN,若四边形MPNQ恰好为正方形,直接写出m的值.
19.(5分)如图1,AB为半圆O的直径,D为BA的延长线上一点,DC为半圆O的切线,切点为C.
(1)求证:∠ACD=∠B;
(2)如图2,∠BDC的平分线分别交AC,BC于点E,F,求∠CEF的度数.
20.(8分)如图,对称轴为直线x=的抛物线经过点A(6,0)和B(0,4).
(1)求抛物线解析式及顶点坐标;
(2)设点E(x,y)是抛物线上一动点,且位于第四象限,四边形OEAF是以OA为对角线的平行四边形,求四边形OEAF的面积S与x之间的函数关系式,并写出自变量x的取值范围;
(3)①当四边形OEAF的面积为24时,请判断OEAF是否为菱形?
②是否存在点E,使四边形OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.
21.(10分)已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE = AF.
求证:BE = DF;连接AC交EF于点O,延长OC至点M,使OM = OA,连接EM、FM.判断四边形AEMF是什么特殊四边形?并证明你的结论.
22.(10分)如图,AD是△ABC的中线,过点C作直线CF∥AD.
(问题)如图①,过点D作直线DG∥AB交直线CF于点E,连结AE,求证:AB=DE.
(探究)如图②,在线段AD上任取一点P,过点P作直线PG∥AB交直线CF于点E,连结AE、BP,探究四边形ABPE是哪类特殊四边形并加以证明.
(应用)在探究的条件下,设PE交AC于点M.若点P是AD的中点,且△APM的面积为1,直接写出四边形ABPE的面积.
23.(12分)某高校学生会在某天午餐后,随机调查了部分同学就餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.
(1)这次被调查的同学共有名;
(2)补全条形统计图;
(3)计算在扇形统计图中剩大量饭菜所对应扇形圆心角的度数;
(4)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校20000名学生一餐浪费的食物可供多少人食用一餐?
24.(14分)某同学用两个完全相同的直角三角形纸片重叠在一起(如图1)固定△ABC不动,将△DEF沿线段AB向右平移.
(1)若∠A=60°,斜边AB=4,设AD=x(0≤x≤4),两个直角三角形纸片重叠部分的面积为y,试求出y与x的函数关系式;
(2)在运动过程中,四边形CDBF能否为正方形,若能,请指出此时点D的位置,并说明理由;若不能,请你添加一个条件,并说明四边形CDBF为正方形?
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
解:∵四边形ABCD是平行四边形,∴AH∥BG,AD=BC,∴∠H=∠HBG.∵∠HBG=∠HBA,∴∠H=∠HBA,∴AH=AB.
同理可证BG=AB,∴AH=BG.∵AD=BC,∴DH=CG,故C正确.
∵AH=AB,∠OAH=∠OAB,∴OH=OB,故A正确.
∵DF∥AB,∴∠DFH=∠ABH.∵∠H=∠ABH,∴∠H=∠DFH,∴DF=DH.
同理可证EC=CG.
∵DH=CG,∴DF=CE,故B正确.
无法证明AE=AB,故选D.
2、D
【解析】
从正面看,共2列,左边是1个正方形,
右边是2个正方形,且下齐.
故选D.
3、A
【解析】
先在Rt△ABD中利用勾股定理求出BD=5,在Rt△ABF中利用勾股定理求出BF=,则AF=4-=.再过G作GH∥BF,交BD于H,证明GH=GD,BH=GH,设DG=GH=BH=x,则FG=FD-GD=-x,HD=5-x,由GH∥FB,得出=,即可求解.
【详解】
解:在Rt△ABD中,∵∠A=90°,AB=3,AD=4,
∴BD=5,
在Rt△ABF中,∵∠A=90°,AB=3,AF=4-DF=4-BF,
∴BF2=32+(4-BF)2,
解得BF=,
∴AF=4-=.
过G作GH∥BF,交BD于H,
∴∠FBD=∠GHD,∠BGH=∠FBG,
∵FB=FD,
∴∠FBD=∠FDB,
∴∠FDB=∠GHD,
∴GH=GD,
∵∠FBG=∠EBC=∠DBC=∠ADB=∠FBD,
又∵∠FBG=∠BGH,∠FBG=∠GBH,
∴BH=GH,
设DG=GH=BH=x,则FG=FD-GD=-x,HD=5-x,
∵GH∥FB,
∴ =,即=,
解得x=.
故选A.
【点睛】
本题考查了旋转的性质,矩形的性质,等腰三角形的性质,勾股定理,平行线分线段成比例定理,准确作出辅助线是解题关键.
4、D
【解析】
A选项:把(-2,1)代入解析式得:左边=右边,故本选项正确;
B选项:因为-2<0,图象在第二、四象限,故本选项正确;
C选项:当x<0,且k<0,y随x的增大而增大,故本选项正确;
D选项:当x>0时,y<0,故本选项错误.
故选D.
5、B
【解析】
解:根据中心对称的概念可得第一个图形是中心对称图形,第二个图形不是中心对称图形,第三个图形是中心对称图形,第四个图形不是中心对称图形,所以,中心对称图有2个.
故选B.
【点睛】
本题考查中心对称图形的识别,掌握中心对称图形的概念是本题的解题关键.
6、A
【解析】
试题分析:在Rt△ABC中,BC=6米,,∴AC=BC×=6(米).
∴(米).故选A.
【详解】
请在此输入详解!
7、A
【解析】
直接利用二次根式有意义的条件分析得出答案.
【详解】
∵式子在实数范围内有意义,
∴ x﹣1>0, 解得:x>1.
故选:A.
【点睛】
此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.
8、C.
【解析】
试题分析:如答图,过点O作OD⊥BC,垂足为D,连接OB,OC,
∵OB=5,OD=3,∴根据勾股定理得BD=4.
∵∠A=∠BOC,∴∠A=∠BOD.
∴tanA=tan∠BOD=.
故选D.
考点:1.垂径定理;2.圆周角定理;3.勾股定理;4.锐角三角函数定义.
9、A
【解析】试题解析:A、x2•x2•x2=x6,故选项A符合题意;
B、x2+x2+x2=3x2,故选项B不符合题意;
C、x2•x3=x5,故选项C不符合题意;
D、x4+x2,无法计算,故选项D不符合题意.
故选A.
10、C
【解析】
根据反比例函数y=的图象上点的坐标特征,以及该函数的图象的性质进行分析、解答.
【详解】
A.反比例函数的图像是双曲线,正确;
B.k=2>0,图象位于一、三象限,正确;
C.在每一象限内,y的值随x的增大而减小,错误;
D.∵ab=ba,∴若点(a,b)在它的图像上,则点(b,a)也在它的图像上,故正确.
故选C.
【点睛】
本题主要考查反比例函数的性质.注意:反比例函数的增减性只指在同一象限内.
二、填空题(共7小题,每小题3分,满分21分)
11、1
【解析】
如图,连接AD,根据圆周角定理可得AD⊥BC.在Rt△ADC中,sinC= ;在Rt△ABD中,tanB=.已知7sinC=3tanB,所以7×=3×,又因AC=14,即可求得BD=1.
点睛:此题主要考查的是圆周角定理和锐角三角函数的定义,以公共边AD为桥梁,利用锐角三角函数的定义得到tanB和sinC的式子是解决问题的关键.
12、
【解析】
设“复兴号”的速度为x千米/时,则原来列车的速度为(x-50)千米/时,根据提速后从北京到上海运行时间缩短了30分钟列出方程即可.
【详解】
设“复兴号”的速度为x千米/时,则原来列车的速度为(x-50)千米/时,
根据题意得.
故答案为.
【点睛】
本题主要考查由实际问题抽象出分式方程,解题的关键是理解题意,找到题目蕴含的相等关系.
13、x1=0,x2=1
【解析】
先移项,然后利用因式分解法求解.
【详解】
x2=1x
x2-1x=0,
x(x-1)=0,
x=0或x-1=0,
∴x1=0,x2=1.
故答案为:x1=0,x2=1
【点睛】
本题考查了解一元二次方程-因式分解法:先把方程右边变形为0,再把方程左边分解为两个一次式的乘积,这样原方程转化为两个一元一次方程,然后解一次方程即可得到一元二次方程的解
14、
【解析】
∵=8,()2=8,
∴的算术平方根是.
故答案为:.
15、2
【解析】
【分析】作高线AD,由等腰三角形的性质可知D为BC的中点,即AD为BC的垂直平分线,根据垂径定理,AD过圆心O,由BC的长可得出BD的长,根据勾股定理求出半径,继而可得AD的长,在直角三角形ABD中根据正切的定义求解即可.
试题解析:如图,作AD⊥BC,垂足为D,连接OB,
∵AB=AC,∴BD=CD=BC=×8=4,
∴AD垂直平分BC,
∴AD过圆心O,
在Rt△OBD中,OD==3,
∴AD=AO+OD=8,
在Rt△ABD中,tan∠ABC==2,
故答案为2.
【点睛】本题考查了垂径定理、等腰三角形的性质、正切的定义等知识,综合性较强,正确添加辅助线构造直角三角形进行解题是关键.
16、.
【解析】
试题分析:解答此题要利用互余角的三角函数间的关系:sin(90°-α)=cosα,cos(90°-α)=sinα.
试题解析:∵在△ABC中,∠C=90°,
∴∠A+∠B=90°,
∴cosB=sinA=.
考点:互余两角三角函数的关系.
17、答案不唯一,如:(﹣1,﹣1),横坐标和纵坐标都是负数即可.
【解析】
让横坐标、纵坐标为负数即可.
【详解】
在第三象限内点的坐标为:(﹣1,﹣1)(答案不唯一).
故答案为答案不唯一,如:(﹣1,﹣1),横坐标和纵坐标都是负数即可.
三、解答题(共7小题,满分69分)
18、(1)(1,4)(2)①点M坐标(﹣,)或(﹣,﹣);②m的值为 或
【解析】
(1)利用待定系数法即可解决问题;
(2)①根据tan∠MBA=,tan∠BDE==,由∠MBA=∠BDE,构建方程即可解决问题;②因为点M、N关于抛物线的对称轴对称,四边形MPNQ是正方形,推出点P是抛物线的对称轴与x轴的交点,即OP=1,易证GM=GP,即|-m2+2m+3|=|1-m|,解方程即可解决问题.
【详解】
解:(1)把点B(3,0),C(0,3)代入y=﹣x2+bx+c,
得到,解得,
∴抛物线的解析式为y=﹣x2+2x+3,
∵y=﹣x2+2x﹣1+1+3=﹣(x﹣1)2+4,
∴顶点D坐标(1,4);
(2)①作MG⊥x轴于G,连接BM.则∠MGB=90°,设M(m,﹣m2+2m+3),
∴MG=|﹣m2+2m+3|,BG=3﹣m,
∴tan∠MBA=,
∵DE⊥x轴,D(1,4),
∴∠DEB=90°,DE=4,OE=1,
∵B(3,0),
∴BE=2,
∴tan∠BDE==,
∵∠MBA=∠BDE,
∴=,
当点M在x轴上方时, =,
解得m=﹣或3(舍弃),
∴M(﹣,),
当点M在x轴下方时, =,
解得m=﹣或m=3(舍弃),
∴点M(﹣,﹣),
综上所述,满足条件的点M坐标(﹣,)或(﹣,﹣);
②如图中,∵MN∥x轴,
∴点M、N关于抛物线的对称轴对称,
∵四边形MPNQ是正方形,
∴点P是抛物线的对称轴与x轴的交点,即OP=1,
易证GM=GP,即|﹣m2+2m+3|=|1﹣m|,
当﹣m2+2m+3=1﹣m时,解得m=,
当﹣m2+2m+3=m﹣1时,解得m=,
∴满足条件的m的值为或.
【点睛】
本题考查二次函数综合题、锐角三角函数、正方形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.
19、(1)详见解析;(2)∠CEF=45°.
【解析】
试题分析:(1)连接OC,根据切线的性质和直径所对的圆周角是直角得出∠DCO=∠ACB=90°,然后根据等角的余角相等即可得出结论;
(2)根据三角形的外角的性质证明∠CEF=∠CFE即可求解.
试题解析:
(1)证明:如图1中,连接OC.
∵OA=OC,∴∠1=∠2,
∵CD是⊙O切线,∴OC⊥CD,
∴∠DCO=90°,∴∠3+∠2=90°,
∵AB是直径,∴∠1+∠B=90°,
∴∠3=∠B.
(2)解:∵∠CEF=∠ECD+∠CDE,∠CFE=∠B+∠FDB,
∵∠CDE=∠FDB,∠ECD=∠B,∴∠CEF=∠CFE,
∵∠ECF=90°,
∴∠CEF=∠CFE=45°.
20、(1)抛物线解析式为,顶点为;(2),1<<1;(3)①四边形是菱形;②不存在,理由见解析
【解析】
(1)已知了抛物线的对称轴解析式,可用顶点式二次函数通式来设抛物线,然后将A、B两点坐标代入求解即可.
(2)平行四边形的面积为三角形OEA面积的2倍,因此可根据E点的横坐标,用抛物线的解析式求出E点的纵坐标,那么E点纵坐标的绝对值即为△OAE的高,由此可根据三角形的面积公式得出△AOE的面积与x的函数关系式进而可得出S与x的函数关系式.
(3)①将S=24代入S,x的函数关系式中求出x的值,即可得出E点的坐标和OE,OA的长;如果平行四边形OEAF是菱形,则需满足平行四边形相邻两边的长相等,据此可判断出四边形OEAF是否为菱形.
②如果四边形OEAF是正方形,那么三角形OEA应该是等腰直角三角形,即E点的坐标为(3,﹣3)将其代入抛物线的解析式中即可判断出是否存在符合条件的E点.
【详解】
(1)由抛物线的对称轴是,可设解析式为.
把A、B两点坐标代入上式,得
解之,得
故抛物线解析式为,顶点为
(2)∵点在抛物线上,位于第四象限,且坐标适合
,
∴y<0,即-y>0,-y表示点E到OA的距离.
∵OA是的对角线,
∴.
因为抛物线与轴的两个交点是(1,0)的(1,0),所以,自变量的
取值范围是1<<1.
(3)①根据题意,当S = 24时,即.
化简,得解之,得
故所求的点E有两个,分别为E1(3,-4),E2(4,-4).
点E1(3,-4)满足OE = AE,所以是菱形;
点E2(4,-4)不满足OE = AE,所以不是菱形.
②当OA⊥EF,且OA = EF时,是正方形,
此时点E的坐标只能是(3,-3).
而坐标为(3,-3)的点不在抛物线上,
故不存在这样的点E,使为正方形.
21、(1)证明见解析;(2)四边形AEMF是菱形,证明见解析.
【解析】
(1)求简单的线段相等,可证线段所在的三角形全等,即证△ABE≌△ADF;
(2)由于四边形ABCD是正方形,易得∠ECO=∠FCO=45°,BC=CD;联立(1)的结论,可证得EC=CF,根据等腰三角形三线合一的性质可证得OC(即AM)垂直平分EF;已知OA=OM,则EF、AM互相平分,再根据一组邻边相等的平行四边形是菱形,即可判定四边形AEMF是菱形.
【详解】
(1)证明:∵四边形ABCD是正方形,
∴AB=AD,∠B=∠D=90°,
在Rt△ABE和Rt△ADF中,
∵,
∴Rt△ADF≌Rt△ABE(HL)
∴BE=DF;
(2)四边形AEMF是菱形,理由为:
证明:∵四边形ABCD是正方形,
∴∠BCA=∠DCA=45°(正方形的对角线平分一组对角),
BC=DC(正方形四条边相等),
∵BE=DF(已证),
∴BC-BE=DC-DF(等式的性质),
即CE=CF,
在△COE和△COF中,
,
∴△COE≌△COF(SAS),
∴OE=OF,
又OM=OA,
∴四边形AEMF是平行四边形(对角线互相平分的四边形是平行四边形),
∵AE=AF,
∴平行四边形AEMF是菱形.
22、【问题】:详见解析;【探究】:四边形ABPE是平行四边形,理由详见解析;【应用】:8.
【解析】
(1)先根据平行线的性质和等量代换得出∠1=∠3,再利用中线性质得到BD=DC,证明△ABD≌△EDC,从而证明AB=DE(2)方法一:过点D作DN∥PE交直线CF于点N,由平行线性质得出四边形PDNE是平行四边形,从而得到四边形ABPE是平行四边形.方法二: 延长BP交直线CF于点N,根据平行线的性质结合等量代换证明△ABP≌△EPN,
从而证明四边形ABPE是平行四边形(3)延长BP交CF于H,根据平行四边形的性质结合三角形的面积公式求解即可.
【详解】
证明:如图①
是的中线,
(或证明四边形ABDE是平行四边形,从而得到)
【探究】
四边形ABPE是平行四边形.
方法一:如图②,
证明:过点D作交直线于点,
∴四边形是平行四边形,
∵由问题结论可得
∴四边形是平行四边形.
方法二:如图③,
证明:延长BP交直线CF于点N,
∵是的中线,
∴四边形是平行四边形.
【应用】
如图④,延长BP交CF于H.
由上面可知,四边形是平行四边形,
∴四边形APHE是平行四边形,
,
【点睛】
此题重点考查学生对平行线性质,平行四边形性质的综合应用能力,熟练掌握平行线的性质是解题的关键.
23、(1)1000 (2)200 (3)54° (4)4000人
【解析】
试题分析:(1)根据没有剩饭的人数是400人,所占的百分比是40%,据此即可求得调查的总人数;
(2)利用(1)中求得结果减去其它组的人数即可求得剩少量饭的人数,从而补全直方图;
(3)利用360°乘以对应的比例即可求解;
(4)利用20000除以调查的总人数,然后乘以200即可求解.
试题解析:(1)被调查的同学的人数是400÷40%=1000(名);
(2)剩少量的人数是1000-400-250-150=200(名),
;
(3)在扇形统计图中剩大量饭菜所对应扇形圆心角的度数是:360°×=54°;
(4)×200=4000(人).
答:校20000名学生一餐浪费的食物可供4000人食用一餐.
【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
24、(1)y=(0≤x≤4);(2) 不能为正方形,添加条件:AC=BC时,当点D运动到AB中点位置时四边形CDBF为正方形.
【解析】
分析:(1)根据平移的性质得到DF∥AC,所以由平行线的性质、勾股定理求得GD=,BG==,所以由三角形的面积公式列出函数关系式;(2)不能为正方形,添加条件:AC=BC时,点D运动到AB中点时,四边形CDBF为正方形;当D运动到AB中点时,四边形CDBF是菱形,根据“直角三角形斜边上的中线等于斜边的一半”推知CD=AB,BF=DE,所以AD=CD=BD=CF,又有BE=AD,则CD=BD=BF=CF,故四边形CDBF是菱形,根据有一内角为直角的菱形是正方形来添加条件.
详解:(1)如图(1)
∵DF∥AC,
∴∠DGB=∠C=90°,∠GDB=∠A=60°,∠GBD=30°
∵BD=4﹣x,
∴GD=,BG==
y=S△BDG=××=(0≤x≤4);
(2)不能为正方形,添加条件:AC=BC时,当点D运动到AB中点位置时四边形CDBF为正方形.
∵∠ACB=∠DFE=90°,D是AB的中点
∴CD=AB,BF=DE,
∴CD=BD=BF=BE,
∵CF=BD,
∴CD=BD=BF=CF,
∴四边形CDBF是菱形;
∵AC=BC,D是AB的中点.
∴CD⊥AB即∠CDB=90°
∵四边形CDBF为菱形,
∴四边形CDBF是正方形.
点睛:本题是几何变换综合题型,主要考查了平移变换的性质,勾股定理,正方形的判定,菱形的判定与性质以及直角三角形斜边上的中线.(2)难度稍大,根据三角形斜边上的中线推知CD=BD=BF=BE是解题的关键.