年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    内蒙古巴彦淖尔市杭锦后旗四校联考2022年中考押题数学预测卷含解析

    内蒙古巴彦淖尔市杭锦后旗四校联考2022年中考押题数学预测卷含解析第1页
    内蒙古巴彦淖尔市杭锦后旗四校联考2022年中考押题数学预测卷含解析第2页
    内蒙古巴彦淖尔市杭锦后旗四校联考2022年中考押题数学预测卷含解析第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    内蒙古巴彦淖尔市杭锦后旗四校联考2022年中考押题数学预测卷含解析

    展开

    这是一份内蒙古巴彦淖尔市杭锦后旗四校联考2022年中考押题数学预测卷含解析,共25页。试卷主要包含了下列命题中真命题是,下列运算正确的是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.2017年“智慧天津”建设成效显著,互联网出口带宽达到17200吉比特每秒.将17200用科学记数法表示应为(  )
    A.172×102 B.17.2×103 C.1.72×104 D.0.172×105
    2.抢微信红包成为节日期间人们最喜欢的活动之一.对某单位50名员工在春节期间所抢的红包金额进行统计,并绘制成了统计图.根据如图提供的信息,红包金额的众数和中位数分别是(  )

    A.20,20 B.30,20 C.30,30 D.20,30
    3.正比例函数y=(k+1)x,若y随x增大而减小,则k的取值范围是(  )
    A.k>1 B.k<1 C.k>﹣1 D.k<﹣1
    4.已知点P(a,m),Q(b,n)都在反比例函数y=的图象上,且a<0<b,则下列结论一定正确的是(  )
    A.m+n<0 B.m+n>0 C.m<n D.m>n
    5.随机掷一枚均匀的硬币两次,至少有一次正面朝上的概率为( )
    A. B. C. D.
    6.如图,在△ABC中,点D是AB边上的一点,若∠ACD=∠B,AD=1,AC=2,△ADC的面积为1,则△BCD的面积为( )

    A.1 B.2 C.3 D.4
    7.下列命题中真命题是( )
    A.若a2=b2,则a=b B.4的平方根是±2
    C.两个锐角之和一定是钝角 D.相等的两个角是对顶角
    8.如图,已知在Rt△ABC中,∠ABC=90°,点D是BC边的中点,分别以B、C为圆心,大于线段BC长度一半的长为半径圆弧,两弧在直线BC上方的交点为P,直线PD交AC于点E,连接BE,则下列结论:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED;④ED=AB中,一定正确的是( )

    A.①②③ B.①②④ C.①③④ D.②③④
    9.下列运算正确的是(  )
    A.a6÷a2=a3 B.(2a+b)(2a﹣b)=4a2﹣b2 C.(﹣a)2•a3=a6 D.5a+2b=7ab
    10.在下列四个新能源汽车车标的设计图中,属于中心对称图形的是( )
    A. B. C. D.
    11.下列图形中,是轴对称图形的是( )
    A. B. C. D.
    12.如图,在矩形ABCD中,E是AD上一点,沿CE折叠△CDE,点D恰好落在AC的中点F处,若CD=,则△ACE的面积为(  )

    A.1 B. C.2 D.2
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.计算(﹣a)3•a2的结果等于_____.
    14.如图,将一张矩形纸片ABCD沿对角线BD折叠,点C的对应点为,再将所折得的图形沿EF折叠,使得点D和点A重合若,,则折痕EF的长为______.

    15.一个圆锥的母线长15CM.高为9CM.则侧面展开图的圆心角________。
    16.函数中自变量x的取值范围是_____;函数中自变量x的取值范围是______.
    17.四张背面完全相同的卡片上分别写有0、、、、四个实数,如果将卡片字面朝下随意放在桌子上,任意取一张,那么抽到有理数的概率为___________.
    18.如图1,点P从扇形AOB的O点出发,沿O→A→B→0以1cm/s的速度匀速运动,图2是点P运动时,线段OP的长度y随时间x变化的关系图象,则扇形AOB中弦AB的长度为______cm.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,在△ABC中,∠ABC=90°,以AB为直径的⊙O与AC边交于点D,过点D的直线交BC边于点E,∠BDE=∠A.
    判断直线DE与⊙O的位置关系,并说明理由.若⊙O的半径R=5,tanA=,求线段CD的长.
    20.(6分)如图,将矩形ABCD绕点A顺时针旋转,得到矩形AB′C′D′,点 C的对应点 C′恰好落在CB的延长线上,边AB交边 C′D′于点E.
    (1)求证:BC=BC′;
    (2)若 AB=2,BC=1,求AE的长.

    21.(6分)某商店在2014年至2016年期间销售一种礼盒.2014年,该商店用3500元购进了这种礼盒并且全部售完;2016年,这种礼盒的进价比2014年下降了11元/盒,该商店用2400元购进了与2014年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒.2014年这种礼盒的进价是多少元/盒?若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?
    22.(8分)如图,在平行四边形ABCD中,E为BC边上一点,连结AE、BD且AE=AB.
    求证:∠ABE=∠EAD;若∠AEB=2∠ADB,求证:四边形ABCD是菱形.
    23.(8分)已知四边形ABCD为正方形,E是BC的中点,连接AE,过点A作∠AFD,使∠AFD=2∠EAB,AF交CD于点F,如图①,易证:AF=CD+CF.
    (1)如图②,当四边形ABCD为矩形时,其他条件不变,线段AF,CD,CF之间有怎样的数量关系?请写出你的猜想,并给予证明;
    (2)如图③,当四边形ABCD为平行四边形时,其他条件不变,线段AF,CD,CF之间又有怎样的数量关系?请直接写出你的猜想.

    图① 图② 图③
    24.(10分)如图,在平面直角坐标系中,直线经过点和,双曲线经过点B.
    (1)求直线和双曲线的函数表达式;
    (2)点C从点A出发,沿过点A与y轴平行的直线向下运动,速度为每秒1个单位长度,点C的运动时间为t(0<t<12),连接BC,作BD⊥BC交x轴于点D,连接CD,
    ①当点C在双曲线上时,求t的值;
    ②在0<t<6范围内,∠BCD的大小如果发生变化,求tan∠BCD的变化范围;如果不发生变化,求tan∠BCD的值;
    ③当时,请直接写出t的值.

    25.(10分)如图1,在矩形ABCD中,AD=4,AB=2,将矩形ABCD绕点A逆时针旋转α(0<α<90°)得到矩形AEFG.延长CB与EF交于点H.

    (1)求证:BH=EH;
    (2)如图2,当点G落在线段BC上时,求点B经过的路径长.
    26.(12分)如图所示,某工程队准备在山坡(山坡视为直线l)上修一条路,需要测量山坡的坡度,即tanα的值.测量员在山坡P处(不计此人身高)观察对面山顶上的一座铁塔,测得塔尖C的仰角为37°,塔底B的仰角为26.6°.已知塔高BC=80米,塔所在的山高OB=220米,OA=200米,图中的点O、B、C、A、P在同一平面内,求山坡的坡度.(参考数据sin26.6°≈0.45,tan26.6°≈0.50;sin37°≈0.60,tan37°≈0.75)

    27.(12分)甲、乙两组工人同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量(件)与时间(时)的函数图象如图所示.

    (1)求甲组加工零件的数量y与时间之间的函数关系式.
    (2)求乙组加工零件总量的值.
    (3)甲、乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?再经过多长时间恰好装满第2箱?



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    解:将17200用科学记数法表示为1.72×1.
    故选C.
    【点睛】
    此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    2、C
    【解析】
    根据众数和中位数的定义,出现次数最多的那个数就是众数,把一组数据按照大小顺序排列,中间那个数或中间两个数的平均数叫中位数.
    【详解】
    捐款30元的人数为20人,最多,则众数为30,
    中间两个数分别为30和30,则中位数是30,
    故选C.
    【点睛】
    本题考查了条形统计图、众数和中位数,这是基础知识要熟练掌握.
    3、D
    【解析】
    根据正比例函数图象与系数的关系列出关于k的不等式k+1<0,然后解不等式即可.
    【详解】
    解:∵正比例函数 y=(k+1)x中,y的值随自变量x的值增大而减小,
    ∴k+1<0,
    解得,k<-1;
    故选D.
    【点睛】
    本题主要考查正比例函数图象在坐标平面内的位置与k的关系.解答本题注意理解:直线y=kx所在的位置与k的符号有直接的关系.k>0时,直线必经过一、三象限,y随x的增大而增大;k<0时,直线必经过二、四象限,y随x的增大而减小.
    4、D
    【解析】
    根据反比例函数的性质,可得答案.
    【详解】
    ∵y=−的k=-2<1,图象位于二四象限,a<1,
    ∴P(a,m)在第二象限,
    ∴m>1;
    ∵b>1,
    ∴Q(b,n)在第四象限,
    ∴n<1.
    ∴n<1<m,
    即m>n,
    故D正确;
    故选D.
    【点睛】
    本题考查了反比例函数的性质,利用反比例函数的性质:k<1时,图象位于二四象限是解题关键.
    5、D
    【解析】
    先求出两次掷一枚硬币落地后朝上的面的所有情况,再根据概率公式求解.
    【详解】
    随机掷一枚均匀的硬币两次,落地后情况如下:

    至少有一次正面朝上的概率是,
    故选:D.
    【点睛】
    本题考查了随机事件的概率,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率.
    6、C
    【解析】
    ∵∠ACD=∠B,∠A=∠A,
    ∴△ACD∽△ABC,
    ∴,
    ∴,
    ∴,
    ∴S△ABC=4,
    ∴S△BCD= S△ABC- S△ACD=4-1=1.
    故选C
    考点:相似三角形的判定与性质.
    7、B
    【解析】
    利用对顶角的性质、平方根的性质、锐角和钝角的定义分别判断后即可确定正确的选项.
    【详解】
    A、若a2=b2,则a=±b,错误,是假命题;
    B、4的平方根是±2,正确,是真命题;
    C、两个锐角的和不一定是钝角,故错误,是假命题;
    D、相等的两个角不一定是对顶角,故错误,是假命题.
    故选B.
    【点睛】
    考查了命题与定理的知识,解题的关键是了解对顶角的性质、平方根的性质、锐角和钝角的定义,难度不大.
    8、B
    【解析】
    解:根据作图过程,利用线段垂直平分线的性质对各选项进行判断:
    根据作图过程可知:PB=CP,
    ∵D为BC的中点,∴PD垂直平分BC,∴①ED⊥BC正确.
    ∵∠ABC=90°,∴PD∥AB.
    ∴E为AC的中点,∴EC=EA,∵EB=EC.
    ∴②∠A=∠EBA正确;③EB平分∠AED错误;④ED=AB正确.
    ∴正确的有①②④.
    故选B.
    考点:线段垂直平分线的性质.
    9、B
    【解析】
    A选项:利用同底数幂的除法法则,底数不变,只把指数相减即可;
    B选项:利用平方差公式,应先把2a看成一个整体,应等于(2a)2-b2而不是2a2-b2,故本选项错误;
    C选项:先把(-a)2化为a2,然后利用同底数幂的乘法法则,底数不变,只把指数相加,即可得到;
    D选项:两项不是同类项,故不能进行合并.
    【详解】
    A选项:a6÷a2=a4,故本选项错误;
    B选项:(2a+b)(2a-b)=4a2-b2,故本选项正确;
    C选项:(-a)2•a3=a5,故本选项错误;
    D选项:5a与2b不是同类项,不能合并,故本选项错误;
    故选:B.
    【点睛】
    考查学生同底数幂的乘除法法则的运用以及对平方差公式的掌握,同时要求学生对同类项进行正确的判断.
    10、D
    【解析】
    根据中心对称图形的概念求解.
    【详解】
    解:A.不是中心对称图形,本选项错误;
    B.不是中心对称图形,本选项错误;
    C.不是中心对称图形,本选项错误;
    D.是中心对称图形,本选项正确.
    故选D.
    【点睛】
    本题主要考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后两部分重合.
    11、B
    【解析】
    分析:根据轴对称图形的概念求解.
    详解:A、不是轴对称图形,故此选项不合题意;
    B、是轴对称图形,故此选项符合题意;
    C、不是轴对称图形,故此选项不合题意;
    D、不是轴对称图形,故此选项不合题意;
    故选B.
    点睛:本题考查了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形.
    12、B
    【解析】
    由折叠的性质可得CD=CF=,DE=EF,AC=,由三角形面积公式可求EF的长,即可求△ACE的面积.
    【详解】
    解:∵点F是AC的中点,
    ∴AF=CF=AC,
    ∵将△CDE沿CE折叠到△CFE,
    ∴CD=CF=,DE=EF,
    ∴AC=,
    在Rt△ACD中,AD==1.
    ∵S△ADC=S△AEC+S△CDE,
    ∴×AD×CD=×AC×EF+×CD×DE
    ∴1×=EF+DE,
    ∴DE=EF=1,
    ∴S△AEC=××1=.
    故选B.
    【点睛】
    本题考查了翻折变换,勾股定理,熟练运用三角形面积公式求得DE=EF=1是解决本题的关键.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、﹣a5
    【解析】
    根据幂的乘方和积的乘方运算法则计算即可.
    【详解】
    解:(-a)3•a2=-a3•a2=-a3+2=-a5.
    故答案为:-a5.
    【点睛】
    本题考查了幂的乘方和积的乘方运算.
    14、
    【解析】
    首先由折叠的性质与矩形的性质,证得是等腰三角形,则在中,利用勾股定理,借助于方程即可求得AN的长,又由≌,易得:,由三角函数的性质即可求得MF的长,又由中位线的性质求得EM的长,则问题得解
    【详解】
    如图,设与AD交于N,EF与AD交于M,

    根据折叠的性质可得:,,,
    四边形ABCD是矩形,
    ,,,



    设,则,
    在中,,


    即,
    ,,,
    ≌,





    由折叠的性质可得:,




    故答案为.
    【点睛】
    本题考查了折叠的性质,全等三角形的判定与性质,三角函数的性质以及勾股定理等知识,综合性较强,有一定的难度,解题时要注意数形结合思想与方程思想的应用.
    15、288°
    【解析】
    母线长为15cm,高为9cm,由勾股定理可得圆锥的底面半径;由底面周长与扇形的弧长相等求得圆心角.
    【详解】

    解:如图所示,在Rt△SOA中,SO=9,SA=15;
    则:
    设侧面属开图扇形的国心角度数为n,则由 得n=288°
    故答案为:288°.
    【点睛】
    本题利用了勾股定理,弧长公式,圆的周长公式和扇形面积公式求解.
    16、x≠2 x≥3
    【解析】
    根据分式的意义和二次根式的意义,分别求解.
    【详解】
    解:根据分式的意义得2-x≠0,解得x≠2;
    根据二次根式的意义得2x-6≥0,解得x≥3.
    故答案为: x≠2, x≥3.
    【点睛】
    数自变量的范围一般从几个方面考虑:
    (1)当函数表达式是整式时,自变量可取全体实数;
    (2)当函数表达式是分式时,考虑分式的分母不能为0;
    (3)当函数表达式是二次根式时,被开方数为非负数.
    17、
    【解析】
    根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.
    【详解】
    ∵在0.、、、这四个实数种,有理数有0.、、这3个,
    ∴抽到有理数的概率为,
    故答案为.
    【点睛】
    此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
    18、
    【解析】
    由图2可以计算出OB的长度,然后利用OB=OA可以计算出通过弦AB的长度.
    【详解】
    由图2得通过OB所用的时间为s,则OB的长度为1×2=2cm,则通过弧AB的时间为s,则弧长AB为,利用弧长公式,得出∠AOB=120°,即可以算出AB为.
    【点睛】
    本题主要考查了从图中提取信息的能力和弧长公式的运用及转换,熟练运用公式是本题的解题关键.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1) DE与⊙O相切; 理由见解析;(2).
    【解析】
    (1)连接OD,利用圆周角定理以及等腰三角形的性质得出OD⊥DE,进而得出答案;
    (2)得出△BCD∽△ACB,进而利用相似三角形的性质得出CD的长.
    【详解】
    解:(1)直线DE与⊙O相切.
    理由如下:连接OD.

    ∵OA=OD
    ∴∠ODA=∠A
    又∵∠BDE=∠A
    ∴∠ODA=∠BDE
    ∵AB是⊙O直径
    ∴∠ADB=90°
    即∠ODA+∠ODB=90°
    ∴∠BDE+∠ODB=90°
    ∴∠ODE=90°
    ∴OD⊥DE
    ∴DE与⊙O相切;
    (2)∵R=5,
    ∴AB=10,
    在Rt△ABC中
    ∵tanA=
    ∴BC=AB•tanA=10×,
    ∴AC=,
    ∵∠BDC=∠ABC=90°,∠BCD=∠ACB
    ∴△BCD∽△ACB

    ∴CD=.
    【点睛】
    本题考查切线的判定、勾股定理及相似三角形的判定与性质,掌握相关性质定理灵活应用是本题的解题关键.
    20、(1)证明见解析;(2)AE=.
    【解析】
    (1)连结 AC、AC′,根据矩形的性质得到∠ABC=90°,即 AB⊥CC′, 根据旋转的性质即可得到结论;
    (2)根据矩形的性质得到 AD=BC,∠D=∠ABC′=90°,根据旋转的性质得到 BC′=AD′,AD=AD′,证得 BC′=AD′,根据全等三角形的性质得到 BE=D′E,设 AE=x,则 D′E=2﹣x,根据勾股定理列方程即可得到结论.
    【详解】
    解::(1)连结 AC、AC′,
    ∵四边形 ABCD为矩形,
    ∴∠ABC=90°,即 AB⊥CC′,
    ∵将矩形 ABCD 绕点A顺时针旋转,得到矩形 AB′C′D′,
    ∴AC=AC′,
    ∴BC=BC′;
    (2)∵四边形 ABCD 为矩形,
    ∴AD=BC,∠D=∠ABC′=90°,
    ∵BC=BC′,
    ∴BC′=AD′,
    ∵将矩形 ABCD 绕点 A 顺时针旋转,得到矩形 AB′C′D′,
    ∴AD=AD′,
    ∴BC′=AD′,
    在△AD′E 与△C′BE中

    ∴△AD′E≌△C′BE,
    ∴BE=D′E,
    设 AE=x,则 D′E=2﹣x,
    在 Rt△AD′E 中,∠D′=90°,
    由勾定理,得 x2﹣(2﹣x)2=1,
    解得 x=,
    ∴AE= .

    【点睛】
    本题考查了旋转的性质,三角形全等的判定和性质,勾股定理的应用等, 熟练掌握性质定理是解题的关键.
    21、(1)35元/盒;(2)20%.
    【解析】
    试题分析:(1)设2014年这种礼盒的进价为x元/盒,则2016年这种礼盒的进价为(x﹣11)元/盒,根据2014年花3500元与2016年花2400元购进的礼盒数量相同,即可得出关于x的分式方程,解之经检验后即可得出结论;
    (2)设年增长率为m,根据数量=总价÷单价求出2014年的购进数量,再根据2014年的销售利润×(1+增长率)2=2016年的销售利润,即可得出关于m的一元二次方程,解之即可得出结论.
    试题解析:(1)设2014年这种礼盒的进价为x元/盒,则2016年这种礼盒的进价为(x﹣11)元/盒,根据题意得:,解得:x=35,经检验,x=35是原方程的解.
    答:2014年这种礼盒的进价是35元/盒.
    (2)设年增长率为m,2014年的销售数量为3500÷35=100(盒).
    根据题意得:(60﹣35)×100(1+a)2=(60﹣35+11)×100,解得:a=0.2=20%或a=﹣2.2(不合题意,舍去).
    答:年增长率为20%.
    考点:一元二次方程的应用;分式方程的应用;增长率问题.
    22、(1)证明见解析;(2)证明见解析.
    【解析】
    (1)根据平行四边形的对边互相平行可得AD∥BC,再根据两直线平行,内错角相等可得∠AEB=∠EAD,根据等边对等角可得∠ABE=∠AEB,即可得证.
    (2)根据两直线平行,内错角相等可得∠ADB=∠DBE,然后求出∠ABD=∠ADB,再根据等角对等边求出AB=AD,然后利用邻边相等的平行四边形是菱形证明即可.
    【详解】
    证明:(1)∵在平行四边形ABCD中,AD∥BC,
    ∴∠AEB=∠EAD.
    ∵AE=AB,
    ∴∠ABE=∠AEB.
    ∴∠ABE=∠EAD.
    (2)∵AD∥BC,
    ∴∠ADB=∠DBE.
    ∵∠ABE=∠AEB,∠AEB=2∠ADB,
    ∴∠ABE=2∠ADB.
    ∴∠ABD=∠ABE-∠DBE=2∠ADB-∠ADB=∠ADB.
    ∴AB=AD.
    又∵四边形ABCD是平行四边形,
    ∴四边形ABCD是菱形.
    23、(1)图②结论:AF=CD+CF. (2)图③结论:AF=CD+CF.
    【解析】
    试题分析:(1)作,的延长线交于点.证三角形全等,进而通过全等三角形的对应边相等验证之间的关系;
    (2)延长交的延长线于点由全等三角形的对应边相等验证关系.
    试题解析:(1)图②结论:
    证明:作,的延长线交于点.

    ∵四边形是矩形,




    由是中点,可证≌


    (2)图③结论:
    延长交的延长线于点如图所示

    因为四边形是平行四边形
    所以//且,
    因为为的中点,所以也是的中点,
    所以
    又因为

    所以
    又因为
    所以≌
    所以
    因为

    24、(1)直线的表达式为,双曲线的表达式为;(2)①;②当时,的大小不发生变化,的值为;③t的值为或.
    【解析】
    (1)由点利用待定系数法可求出直线的表达式;再由直线的表达式求出点B的坐标,然后利用待定系数法即可求出双曲线的表达式;
    (2)①先求出点C的横坐标,再将其代入双曲线的表达式求出点C的纵坐标,从而即可得出t的值;
    ②如图1(见解析),设直线AB交y轴于M,则,取CD的中点K,连接AK、BK.利用直角三角形的性质证明A、D、B、C四点共圆,再根据圆周角定理可得,从而得出,即可解决问题;
    ③如图2(见解析),过点B作于M,先求出点D与点M重合的临界位置时t的值,据此分和两种情况讨论:根据三点坐标求出的长,再利用三角形相似的判定定理与性质求出DM的长,最后在中,利用勾股定理即可得出答案.
    【详解】
    (1)∵直线经过点和
    ∴将点代入得
    解得
    故直线的表达式为
    将点代入直线的表达式得
    解得

    ∵双曲线经过点
    ,解得
    故双曲线的表达式为;
    (2)①轴,点A的坐标为
    ∴点C的横坐标为12
    将其代入双曲线的表达式得
    ∴C的纵坐标为,即
    由题意得,解得
    故当点C在双曲线上时,t的值为;
    ②当时,的大小不发生变化,求解过程如下:
    若点D与点A重合
    由题意知,点C坐标为
    由两点距离公式得:


    由勾股定理得,即
    解得
    因此,在范围内,点D与点A不重合,且在点A左侧
    如图1,设直线AB交y轴于M,取CD的中点K,连接AK、BK
    由(1)知,直线AB的表达式为
    令得,则,即
    点K为CD的中点,
    (直角三角形中,斜边上的中线等于斜边的一半)
    同理可得:

    A、D、B、C四点共圆,点K为圆心
    (圆周角定理)


    ③过点B作于M
    由题意和②可知,点D在点A左侧,与点M重合是一个临界位置
    此时,四边形ACBD是矩形,则,即
    因此,分以下2种情况讨论:
    如图2,当时,过点C作于N







    ,即


    由勾股定理得

    解得或(不符题设,舍去)
    当时,同理可得:
    解得或(不符题设,舍去)
    综上所述,t的值为或.

    【点睛】
    本题考查反比例函数综合题、锐角三角函数、相似三角形的判定和性质、四点共圆、勾股定理等知识点,解题的关键是学会添加常用辅助线,构造相似三角形解决问题.
    25、(1)见解析;(2)B点经过的路径长为π.
    【解析】
    (1)、连接AH,根据旋转图形的性质得出AB=AE,∠ABH=∠AEH=90°,根据AH为公共边得出Rt△ABH和Rt△AEH全等,从而得出答案;(2)、根据题意得出∠EAB的度数,然后根据弧长的计算公式得出答案.
    【详解】
    (1)、证明:如图1中,连接AH,
    由旋转可得AB=AE,∠ABH=∠AEH=90°,又∵AH=AH,∴Rt△ABH≌Rt△AEH,∴BH=EH.
    (2)、解:由旋转可得AG=AD=4,AE=AB,∠EAG=∠BAC=90°,在Rt△ABG中,AG=4,AB=2,
    ∴cos∠BAG=,∴∠BAG=30°,∴∠EAB=60° ,∴弧BE的长为=π,
    即B点经过的路径长为π.

    【点睛】
    本题主要考查的是旋转图形的性质以及扇形的弧长计算公式,属于中等难度的题型.明白旋转图形的性质是解决这个问题的关键.
    26、
    【解析】
    过点P作PD⊥OC于D,PE⊥OA于E,则四边形ODPE为矩形,先解Rt△PBD,得出BD=PD•tan26.6°;解Rt△CBD,得出CD=PD•tan37°;再根据CD﹣BD=BC,列出方程,求出PD=2,进而求出PE=4,AE=5,然后在△APE中利用三角函数的定义即可求解.
    【详解】
    解:如图,过点P作PD⊥OC于D,PE⊥OA于E,则四边形ODPE为矩形.

    在Rt△PBD中,∵∠BDP=90°,∠BPD=26.6°,
    ∴BD=PD•tan∠BPD=PD•tan26.6°.
    在Rt△CBD中,∵∠CDP=90°,∠CPD=37°,
    ∴CD=PD•tan∠CPD=PD•tan37°.
    ∵CD﹣BD=BC,∴PD•tan37°﹣PD•tan26.6°=1.
    ∴0.75PD﹣0.50PD=1,解得PD=2.
    ∴BD=PD•tan26.6°≈2×0.50=3.
    ∵OB=220,∴PE=OD=OB﹣BD=4.
    ∵OE=PD=2,∴AE=OE﹣OA=2﹣200=5.
    ∴.
    27、 (1)见解析(2)300(3)2小时
    【解析】
    解:(1)设甲组加工的零件数量y与时间x的函数关系式为.
    根据题意,得,解得.
    所以,甲组加工的零件数量y与时间x的函数关系式为:.
    (2)当时,.
    因为更换设备后,乙组工作效率是原来的2倍,
    所以,.解得.
    (3)乙组更换设备后,乙组加工的零件的个数y与时间x的函数关系式为

    当0≤x≤2时,.解得.舍去.
    当2

    相关试卷

    内蒙古巴彦淖尔市临河区2021-2022学年中考押题数学预测卷含解析:

    这是一份内蒙古巴彦淖尔市临河区2021-2022学年中考押题数学预测卷含解析,共22页。试卷主要包含了答题时请按要求用笔,计算 的结果为,计算等内容,欢迎下载使用。

    内蒙古巴彦淖尔市杭锦后旗四校联考2021-2022学年中考四模数学试题含解析:

    这是一份内蒙古巴彦淖尔市杭锦后旗四校联考2021-2022学年中考四模数学试题含解析,共21页。试卷主要包含了计算 的结果为等内容,欢迎下载使用。

    2022年内蒙古巴彦淖尔市乌拉特前旗中考押题数学预测卷含解析:

    这是一份2022年内蒙古巴彦淖尔市乌拉特前旗中考押题数学预测卷含解析,共23页。试卷主要包含了答题时请按要求用笔,实数的相反数是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map