漯河市重点中学2022年中考数学考前最后一卷含解析
展开
这是一份漯河市重点中学2022年中考数学考前最后一卷含解析,共17页。
2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.不等式组的解集是( )
A.﹣1≤x≤4 B.x<﹣1或x≥4 C.﹣1<x<4 D.﹣1<x≤4
2.不等式组的解集是( )
A.x>﹣1 B.x≤2 C.﹣1<x<2 D.﹣1<x≤2
3.如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,若AB=6,EF=2,则BC的长为( )
A.8 B.10 C.12 D.14
4.由4个相同的小立方体搭成的几何体如图所示,则它的主视图是( )
A. B. C. D.
5.如图,在平面直角坐标系中,△ABC与△A1B1C1是以点P为位似中心的位似图形,且顶点都在格点上,则点P的坐标为( )
A.(﹣4,﹣3) B.(﹣3,﹣4) C.(﹣3,﹣3) D.(﹣4,﹣4)
6.若※是新规定的某种运算符号,设a※b=b 2 -a,则-2※x=6中x的值()
A.4 B.8 C.2 D.-2
7.已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是( )
A. B. C. D
8.将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是( )
A.y=(x-1)2+2 B.y=(x+1)2+2 C.y=(x-1)2-2 D.y=(x+1)2-2
9.如图,△ABC中,∠B=70°,则∠BAC=30°,将△ABC绕点C顺时针旋转得△EDC.当点B的对应点D恰好落在AC上时,∠CAE的度数是( )
A.30° B.40° C.50° D.60°
10.关于反比例函数,下列说法正确的是( )
A.函数图像经过点(2,2); B.函数图像位于第一、三象限;
C.当时,函数值随着的增大而增大; D.当时,.
二、填空题(共7小题,每小题3分,满分21分)
11.对于函数,若x>2,则y______3(填“>”或“<”).
12.若xay与3x2yb是同类项,则ab的值为_____.
13.因式分解=______.
14.如图,在矩形ABCD中,对角线BD的长为1,点P是线段BD上的一点,联结CP,将△BCP沿着直线CP翻折,若点B落在边AD上的点E处,且EP//AB,则AB的长等于________.
15.函数中,自变量x的取值范围是 .
16.抛物线y=(x﹣3)2+1的顶点坐标是____.
17.下列对于随机事件的概率的描述:
①抛掷一枚均匀的硬币,因为“正面朝上”的概率是0.5,所以抛掷该硬币100次时,就会有50次“正面朝上”;
②一个不透明的袋子里装有4个黑球,1个白球,这些球除了颜色外无其他差别.从中随机摸出一个球,恰好是白球的概率是0.2;
③测试某射击运动员在同一条件下的成绩,随着射击次数的增加,“射中9环以上”的频率总是在0.85附近摆动,显示出一定的稳定性,可以估计该运动员“射中9环以上”的概率是0.85
其中合理的有______(只填写序号).
三、解答题(共7小题,满分69分)
18.(10分)某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.
求甲、乙两种商品的每件进价;
该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?
19.(5分)如图,AB为⊙O的直径,点D、E位于AB两侧的半圆上,射线DC切⊙O于点D,已知点E是半圆弧AB上的动点,点F是射线DC上的动点,连接DE、AE,DE与AB交于点P,再连接FP、FB,且∠AED=45°.求证:CD∥AB;填空:
①当∠DAE= 时,四边形ADFP是菱形;
②当∠DAE= 时,四边形BFDP是正方形.
20.(8分)图1是某市2009年4月5日至14日每天最低气温的折线统计图.图2是该市2007年4月5日至14日每天最低气温的频数分布直方图,根据图1提供的信息,补全图2中频数分布直方图;在这10天中,最低气温的众数是____,中位数是____,方差是_____.请用扇形图表示出这十天里温度的分布情况.
21.(10分)某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下面是水平放置的破裂管道有水部分的截面.若这个输水管道有水部分的水面宽,水面最深地方的高度为4cm,求这个圆形截面的半径.
22.(10分)某工厂计划生产A、B两种产品共60件,需购买甲、乙两种材料.生产一件A产品需甲种材料4千克,乙种材料1千克;生产一件B产品需甲、乙两种材料各3千克.经测算,购买甲、乙两种材料各1千克共需资金60元;购买甲种材料2千克和乙种材料3千克共需资金155元.
(1)甲、乙两种材料每千克分别是多少元?
(2)现工厂用于购买甲、乙两种材料的资金不能超过10000元,且生产B产品要超过38件,问有哪几种符合条件的生产方案?
(3)在(2)的条件下,若生产一件A产品需加工费40元,若生产一件B产品需加工费50元,应选择哪种生产方案,才能使生产这批产品的成本最低?请直接写出方案.
23.(12分)计算.
24.(14分)如图(1),P 为△ABC 所在平面上一点,且∠APB=∠BPC=∠CPA=120°,则点 P 叫做△ABC 的费马点.
(1)如果点 P 为锐角△ABC 的费马点,且∠ABC=60°.
①求证:△ABP∽△BCP;
②若 PA=3,PC=4,则 PB= .
(2)已知锐角△ABC,分别以 AB、AC 为边向外作正△ABE 和正△ACD,CE 和 BD相交于 P 点.如图(2)
①求∠CPD 的度数;
②求证:P 点为△ABC 的费马点.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
试题分析:解不等式①可得:x>-1,解不等式②可得:x≤4,则不等式组的解为-1<x≤4,故选D.
2、D
【解析】
由﹣x<1得,∴x>﹣1,由3x﹣5≤1得,3x≤6,∴x≤2,∴不等式组的解集为﹣1<x≤2,故选D
3、B
【解析】
试题分析:根据平行四边形的性质可知AB=CD,AD∥BC,AD=BC,然后根据平行线的性质和角平分线的性质可知AB=AF,DE=CD,因此可知AF+DE=AD+EF=2AB=12,解得AD=BC=12-2=10.
故选B.
点睛:此题主要考查了平行四边形的性质和等腰三角形的性质,解题关键是把所求线段转化为题目中已知的线段,根据等量代换可求解.
4、A
【解析】试题分析:几何体的主视图有2列,每列小正方形数目分别为2,1.
故选A.
考点:三视图
视频
5、A
【解析】
延长A1A、B1B和C1C,从而得到P点位置,从而可得到P点坐标.
【详解】
如图,点P的坐标为(-4,-3).
故选A.
【点睛】
本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.
6、C
【解析】
解:由题意得:,∴,∴x=±1.故选C.
7、D
【解析】
先根据三角形的周长公式求出函数关系式,再根据三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边求出x的取值范围,然后选择即可.
【详解】
由题意得,2x+y=10,
所以,y=-2x+10,
由三角形的三边关系得,,
解不等式①得,x>2.5,
解不等式②的,x<5,
所以,不等式组的解集是2.5<x<5,
正确反映y与x之间函数关系的图象是D选项图象.
故选:D.
8、A
【解析】
试题分析:根据函数图象右移减、左移加,上移加、下移减,可得答案.
解:将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是 y=(x﹣1)2+2,
故选A.
考点:二次函数图象与几何变换.
9、C
【解析】
由三角形内角和定理可得∠ACB=80°,由旋转的性质可得AC=CE,∠ACE=∠ACB=80°,由等腰的性质可得∠CAE=∠AEC=50°.
【详解】
∵∠B=70°,∠BAC=30°
∴∠ACB=80°
∵将△ABC绕点C顺时针旋转得△EDC.
∴AC=CE,∠ACE=∠ACB=80°
∴∠CAE=∠AEC=50°
故选C.
【点睛】
本题考查了旋转的性质,等腰三角形的性质,熟练运用旋转的性质是本题的关键.
10、C
【解析】
直接利用反比例函数的性质分别分析得出答案.
【详解】
A、关于反比例函数y=-,函数图象经过点(2,-2),故此选项错误;
B、关于反比例函数y=-,函数图象位于第二、四象限,故此选项错误;
C、关于反比例函数y=-,当x>0时,函数值y随着x的增大而增大,故此选项正确;
D、关于反比例函数y=-,当x>1时,y>-4,故此选项错误;
故选C.
【点睛】
此题主要考查了反比例函数的性质,正确掌握相关函数的性质是解题关键.
二、填空题(共7小题,每小题3分,满分21分)
11、
0 ∴W随a增大而增大∴当a=39时,总成本最低.
考点:二元一次方程组的应用、不等式组的应用、一次函数的应用.
23、
【解析】
分析:先计算,再做除法,结果化为整式或最简分式.
详解:
.
点睛:本题考查了分式的混合运算.解题过程中注意运算顺序.解决本题亦可先把除法转化成乘法,利用乘法对加法的分配律后再求和.
24、(1)①证明见解析;②;(2)①60°;②证明见解析;
【解析】
试题分析:(1)①根据题意,利用内角和定理及等式性质得到一对角相等,利用两角相等的三角形相似即可得证;
②由三角形ABP与三角形BCP相似,得比例,将PA与PC的长代入求出PB的长即可;
(2)①根据三角形ABE与三角形ACD为等边三角形,利用等边三角形的性质得到两对边相等,两个角为60°,利用等式的性质得到夹角相等,利用SAS得到三角形ACE与三角形ABD全等,利用全等三角形的对应角相等得到∠1=∠2,再由对顶角相等,得到∠5=∠6,即可求出所求角度数;
②由三角形ADF与三角形CPF相似,得到比例式,变形得到积的恒等式,再由对顶角相等,利用两边成比例,且夹角相等的三角形相似得到三角形AFP与三角形CFD相似,利用相似三角形对应角相等得到∠APF为60°,由∠APD+∠DPC,求出∠APC为120°,进而确定出∠APB与∠BPC都为120°,即可得证.
试题解析:(1)证明:①∵∠PAB+∠PBA=180°﹣∠APB=60°,∠PBC+∠PBA=∠ABC=60°,
∴∠PAB=∠PBC,
又∵∠APB=∠BPC=120°,
∴△ABP∽△BCP,
②解:∵△ABP∽△BCP,
∴,
∴PB2=PA•PC=12,
∴PB=2;
(2)解:①∵△ABE与△ACD都为等边三角形,
∴∠BAE=∠CAD=60°,AE=AB,AC=AD,
∴∠BAE+∠BAC=∠CAD+∠BAC,即∠EAC=∠BAD,
在△ACE和△ABD中,
,
∴△ACE≌△ABD(SAS),
∴∠1=∠2,
∵∠3=∠4,
∴∠CPD=∠6=∠5=60°;
②证明:∵△ADF∽△CFP,
∴AF•PF=DF•CF,
∵∠AFP=∠CFD,
∴△AFP∽△CDF.
∴∠APF=∠ACD=60°,
∴∠APC=∠CPD+∠APF=120°,
∴∠BPC=120°,
∴∠APB=360°﹣∠BPC﹣∠APC=120°,
∴P点为△ABC的费马点.
考点:相似形综合题
相关试卷
这是一份广州市重点中学2021-2022学年中考数学考前最后一卷含解析,共18页。试卷主要包含了已知点P等内容,欢迎下载使用。
这是一份迪庆市重点中学2021-2022学年中考数学考前最后一卷含解析,共21页。试卷主要包含了估计-1的值在,化简的结果是等内容,欢迎下载使用。
这是一份2022年宜昌市重点中学中考数学考前最后一卷含解析,共24页。试卷主要包含了答题时请按要求用笔,估计5﹣的值应在,下列算式中,结果等于a5的是等内容,欢迎下载使用。