终身会员
搜索
    上传资料 赚现金
    内蒙古鄂尔多斯市重点名校2021-2022学年中考数学四模试卷含解析
    立即下载
    加入资料篮
    内蒙古鄂尔多斯市重点名校2021-2022学年中考数学四模试卷含解析01
    内蒙古鄂尔多斯市重点名校2021-2022学年中考数学四模试卷含解析02
    内蒙古鄂尔多斯市重点名校2021-2022学年中考数学四模试卷含解析03
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    内蒙古鄂尔多斯市重点名校2021-2022学年中考数学四模试卷含解析

    展开
    这是一份内蒙古鄂尔多斯市重点名校2021-2022学年中考数学四模试卷含解析,共25页。试卷主要包含了答题时请按要求用笔,计算 的结果为,下列计算结果是x5的为,一次函数y=kx+k等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.已知反比例函数y=的图象在一、三象限,那么直线y=kx﹣k不经过第(  )象限.
    A.一 B.二 C.三 D.四
    2.河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1:,则AB的长为

    A.12米 B.4米 C.5米 D.6米
    3.如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,N表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )

    A.点M B.点N C.点P D.点Q
    4.如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP,CP分别平分∠EDC、∠BCD,则∠P的度数是( )

    A.60° B.65° C.55° D.50°
    5.如图,菱形ABCD的对角线相交于点O,过点D作DE∥AC, 且DE=AC,连接CE、OE,连接AE,交OD于点F,若AB=2,∠ABC=60°,则AE的长为(  )

    A. B. C. D.
    6.已知数a、b、c在数轴上的位置如图所示,化简|a+b|﹣|c﹣b|的结果是(  )

    A.a+b B.﹣a﹣c C.a+c D.a+2b﹣c
    7.如图,在△ABC中,AD是BC边的中线,∠ADC=30°,将△ADC沿AD折叠,使C点落在C′的位置,若BC=4,则BC′的长为 (  )

    A.2 B.2 C.4 D.3
    8.计算 的结果为(  )
    A.1 B.x C. D.
    9.下列计算结果是x5的为(  )
    A.x10÷x2 B.x6﹣x C.x2•x3 D.(x3)2
    10.一次函数y=kx+k(k≠0)和反比例函数在同一直角坐标系中的图象大致是( )
    A. B. C. D.
    11.如图,正方形ABCD中,对角线AC、BD交于点O,∠BAC的平分线交BD于E,交BC于F,BH⊥AF于H,交AC于G,交CD于P,连接GE、GF,以下结论:①△OAE≌△OBG;②四边形BEGF是菱形;③BE=CG;④﹣1;⑤S△PBC:S△AFC=1:2,其中正确的有(  )个.

    A.2 B.3 C.4 D.5
    12.下图是某几何体的三视图,则这个几何体是( )

    A.棱柱 B.圆柱 C.棱锥 D.圆锥
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.分解因式:3x2-6x+3=__.
    14.某校为了解学生最喜欢的球类运动情况,随机选取该校部分学生进行调查,要求每名学生只写一类最喜欢的球类运动,以下是根据调查结果绘制的统计图表的一部分

    那么,其中最喜欢足球的学生数占被调查总人数的百分比为____________%
    15.如图,在△ABC中,AB=5cm,AC=3cm,BC的垂直平分线分别交AB、BC于D、E,则△ACD的周长为 cm.
    16.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=26,CD=24,那么sin∠OCE=  ▲ .

    17.点G是三角形ABC的重心,,,那么 =_____.
    18.一元二次方程x2+mx+3=0的一个根为- 1,则另一个根为 .
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,正方形ABCD的边长为2,BC边在x轴上,BC的中点与原点O重合,过定点M(-2,0)与动点P(0,t)的直线MP记作l.
    (1)若l的解析式为y=2x+4,判断此时点A是否在直线l上,并说明理由;
    (2)当直线l与AD边有公共点时,求t的取值范围.

    20.(6分)一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量y(件)与销售价x(元/件)之间的函数关系如图所示.
    (1)求y与x之间的函数关系式,并写出自变量x的取值范围;
    (2)求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?

    21.(6分)(1)计算:﹣14+sin61°+()﹣2﹣(π﹣)1.
    (2)解不等式组,并把它的解集在数轴上表示出来.
    22.(8分)已知:如图,在△ABC中,AB=13,AC=8,cos∠BAC=,BD⊥AC,垂足为点D,E是BD的中点,联结AE并延长,交边BC于点F.
    (1)求∠EAD的余切值;
    (2)求的值.

    23.(8分)在△ABC中,AB=AC,∠BAC=α,点P是△ABC内一点,且∠PAC+∠PCA=,连接PB,试探究PA、PB、PC满足的等量关系.
    (1)当α=60°时,将△ABP绕点A逆时针旋转60°得到△ACP′,连接PP′,如图1所示.由△ABP≌△ACP′可以证得△APP′是等边三角形,再由∠PAC+∠PCA=30°可得∠APC的大小为   度,进而得到△CPP′是直角三角形,这样可以得到PA、PB、PC满足的等量关系为   ;
    (2)如图2,当α=120°时,参考(1)中的方法,探究PA、PB、PC满足的等量关系,并给出证明;
    (3)PA、PB、PC满足的等量关系为   .

    24.(10分)如图,的直角顶点P在第四象限,顶点A、B分别落在反比例函数图象的两支上,且轴于点C,轴于点D,AB分别与x轴,y轴相交于点F和已知点B的坐标为.
    填空:______;
    证明:;
    当四边形ABCD的面积和的面积相等时,求点P的坐标.

    25.(10分)已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE = AF.
    求证:BE = DF;连接AC交EF于点O,延长OC至点M,使OM = OA,连接EM、FM.判断四边形AEMF是什么特殊四边形?并证明你的结论.
    26.(12分)如图,在大楼AB正前方有一斜坡CD,坡角∠DCE=30°,楼高AB=60米,在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的D处测得楼顶B的仰角为45°,其中点A,C,E在同一直线上.求坡底C点到大楼距离AC的值;求斜坡CD的长度.

    27.(12分)如图,矩形ABCD中,点P是线段AD上一动点,O为BD的中点,PO的延长线交BC于Q.
    (1)求证:OP=OQ;
    (2)若AD=8厘米,AB=6厘米,P从点A出发,以1厘米/秒的速度向D运动(不与D重合).设点P运动时间为t秒,请用t表示PD的长;并求t为何值时,四边形PBQD是菱形.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    根据反比例函数的性质得k>0,然后根据一次函数的进行判断直线y=kx-k不经过的象限.
    【详解】
    ∵反比例函数y=的图象在一、三象限,
    ∴k>0,
    ∴直线y=kx﹣k经过第一、三、四象限,即不经过第二象限.
    故选:B.
    【点睛】
    考查了待定系数法求反比例函数的解析式:设出含有待定系数的反比例函数解析式y=(k为常数,k≠0);把已知条件(自变量与函数的对应值)代入解析式,得到待定系数的方程;解方程,求出待定系数;写出解析式.也考查了反比例函数与一次函数的性质.
    2、A
    【解析】
    试题分析:在Rt△ABC中,BC=6米,,∴AC=BC×=6(米).
    ∴(米).故选A.
    【详解】
    请在此输入详解!
    3、C
    【解析】
    试题分析:∵点M,N表示的有理数互为相反数,∴原点的位置大约在O点,∴绝对值最小的数的点是P点,故选C.

    考点:有理数大小比较.
    4、A
    【解析】
    试题分析:根据五边形的内角和等于540°,由∠A+∠B+∠E=300°,可求∠BCD+∠CDE的度数,再根据角平分线的定义可得∠PDC与∠PCD的角度和,进一步求得∠P的度数.
    解:∵五边形的内角和等于540°,∠A+∠B+∠E=300°,
    ∴∠BCD+∠CDE=540°﹣300°=240°,
    ∵∠BCD、∠CDE的平分线在五边形内相交于点O,
    ∴∠PDC+∠PCD=(∠BCD+∠CDE)=120°,
    ∴∠P=180°﹣120°=60°.
    故选A.
    考点:多边形内角与外角;三角形内角和定理.
    5、C
    【解析】
    在菱形ABCD中,OC=AC,AC⊥BD,∴DE=OC,∵DE∥AC,∴四边形OCED是平行四边形,∵AC⊥BD,∴平行四边形OCED是矩形,∵在菱形ABCD中,∠ABC=60°,∴△ABC为等边三角形,∴AD=AB=AC=2,OA=AC=1,
    在矩形OCED中,由勾股定理得:CE=OD=,
    在Rt△ACE中,由勾股定理得:AE=;故选C.
    点睛:本题考查了菱形的性质,先求出四边形OCED是平行四边形,再根据菱形的对角线互相垂直求出∠COD=90°,证明四边形OCED是矩形,再根据菱形的性质得出AC=AB,再根据勾股定理得出AE的长度即可.
    6、C
    【解析】
    首先根据数轴可以得到a、b、c的取值范围,然后利用绝对值的定义去掉绝对值符号后化简即可.
    【详解】
    解:通过数轴得到a<0,c<0,b>0,|a|<|b|<|c|,
    ∴a+b>0,c﹣b<0
    ∴|a+b|﹣|c﹣b|=a+b﹣b+c=a+c,
    故答案为a+c.
    故选A.
    7、A
    【解析】
    连接CC′,
    ∵将△ADC沿AD折叠,使C点落在C′的位置,∠ADC=30°,
    ∴∠ADC′=∠ADC=30°,CD=C′D,
    ∴∠CDC′=∠ADC+∠ADC′=60°,
    ∴△DCC′是等边三角形,
    ∴∠DC′C=60°,
    ∵在△ABC中,AD是BC边的中线,
    即BD=CD,
    ∴C′D=BD,
    ∴∠DBC′=∠DC′B=∠CDC′=30°,
    ∴∠BC′C=∠DC′B+∠DC′C=90°,
    ∵BC=4,
    ∴BC′=BC•cos∠DBC′=4×=2,
    故选A.

    【点睛】本题考查了折叠的性质、等边三角形的判定与性质、等腰三角形的性质、直角三角形的性质以及三角函数等知识,准确添加辅助线,掌握折叠前后图形的对应关系是解题的关键.
    8、A
    【解析】
    根据同分母分式的加减运算法则计算可得.
    【详解】
    原式===1,
    故选:A.
    【点睛】
    本题主要考查分式的加减法,解题的关键是掌握同分母分式的加减运算法则.
    9、C
    【解析】解:A.x10÷x2=x8,不符合题意;
    B.x6﹣x不能进一步计算,不符合题意;
    C.x2x3=x5,符合题意;
    D.(x3)2=x6,不符合题意.
    故选C.
    10、C
    【解析】
    A、由反比例函数的图象在一、三象限可知k>0,由一次函数的图象过二、四象限可知k<0,两结论相矛盾,故选项错误; B、由反比例函数的图象在二、四象限可知k<0,由一次函数的图象与y轴交点在y轴的正半轴可知k>0,两结论相矛盾,故选项错误;C、由反比例函数的图象在二、四象限可知k<0,由一次函数的图象过二、三、四象限可知k<0,两结论一致,故选项正确;D、由反比例函数的图象在一、三象限可知k>0,由一次函数的图象与y轴交点在y轴的负半轴可知k<0,两结论相矛盾,故选项错误,
    故选C.
    11、C
    【解析】
    根据AF是∠BAC的平分线,BH⊥AF,可证AF为BG的垂直平分线,然后再根据正方形内角及角平分线进行角度转换证明EG=EB,FG=FB,即可判定②选项;设OA=OB=OC=a,菱形BEGF的边长为b,由四边形BEGF是菱形转换得到CF=GF=BF,由四边形ABCD是正方形和角度转换证明△OAE≌△OBG,即可判定①;则△GOE是等腰直角三角形,得到GE=OG,整理得出a,b的关系式,再由△PGC∽△BGA,得到=1+,从而判断得出④;得出∠EAB=∠GBC从而证明△EAB≌△GBC,即可判定③;证明△FAB≌△PBC得到BF=CP,即可求出,从而判断⑤.
    【详解】
    解:∵AF是∠BAC的平分线,
    ∴∠GAH=∠BAH,
    ∵BH⊥AF,
    ∴∠AHG=∠AHB=90°,
    在△AHG和△AHB中

    ∴△AHG≌△AHB(ASA),
    ∴GH=BH,
    ∴AF是线段BG的垂直平分线,
    ∴EG=EB,FG=FB,
    ∵四边形ABCD是正方形,
    ∴∠BAF=∠CAF=×45°=22.5°,∠ABE=45°,∠ABF=90°,
    ∴∠BEF=∠BAF+∠ABE=67.5°,∠BFE=90°﹣∠BAF=67.5°,
    ∴∠BEF=∠BFE,
    ∴EB=FB,
    ∴EG=EB=FB=FG,
    ∴四边形BEGF是菱形;②正确;
    设OA=OB=OC=a,菱形BEGF的边长为b,
    ∵四边形BEGF是菱形,
    ∴GF∥OB,
    ∴∠CGF=∠COB=90°,
    ∴∠GFC=∠GCF=45°,
    ∴CG=GF=b,∠CGF=90°,
    ∴CF=GF=BF,
    ∵四边形ABCD是正方形,
    ∴OA=OB,∠AOE=∠BOG=90°,
    ∵BH⊥AF,
    ∴∠GAH+∠AGH=90°=∠OBG+∠AGH,
    ∴∠OAE=∠OBG,
    在△OAE和△OBG中

    ∴△OAE≌△OBG(ASA),①正确;
    ∴OG=OE=a﹣b,
    ∴△GOE是等腰直角三角形,
    ∴GE=OG,
    ∴b=(a﹣b),
    整理得a=b,
    ∴AC=2a=(2+)b,AG=AC﹣CG=(1+)b,
    ∵四边形ABCD是正方形,
    ∴PC∥AB,
    ∴===1+,
    ∵△OAE≌△OBG,
    ∴AE=BG,
    ∴=1+,
    ∴==1﹣,④正确;
    ∵∠OAE=∠OBG,∠CAB=∠DBC=45°,
    ∴∠EAB=∠GBC,
    在△EAB和△GBC中

    ∴△EAB≌△GBC(ASA),
    ∴BE=CG,③正确;
    在△FAB和△PBC中

    ∴△FAB≌△PBC(ASA),
    ∴BF=CP,
    ∴====,⑤错误;
    综上所述,正确的有4个,
    故选:C.
    【点睛】
    本题综合考查了全等三角形的判定与性质,相似三角形,菱形的判定与性质等四边形的综合题.该题难度较大,需要学生对有关于四边形的性质的知识有一系统的掌握.
    12、D
    【解析】
    主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.
    【详解】
    由俯视图易得几何体的底面为圆,还有表示锥顶的圆心,符合题意的只有圆锥.
    故选D.
    【点睛】
    本题考查由三视图确定几何体的形状,主要考查学生空间想象能力以及对立体图形的认识.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、3(x-1)2
    【解析】
    先提取公因式3,再对余下的多项式利用完全平方公式继续分解.
    【详解】
    .
    故答案是:3(x-1)2.
    【点睛】
    考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
    14、1%
    【解析】
    依据最喜欢羽毛球的学生数以及占被调查总人数的百分比,即可得到被调查总人数,进而得出最喜欢篮球的学生数以及最喜欢足球的学生数占被调查总人数的百分比.
    【详解】
    ∵被调查学生的总数为10÷20%=50人,
    ∴最喜欢篮球的有50×32%=16人,
    则最喜欢足球的学生数占被调查总人数的百分比=×100%=1%,
    故答案为:1.
    【点睛】
    本题主要考查扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.
    15、8
    【解析】
    试题分析:根据线段垂直平分线的性质得,BD=CD,则AB=AD+CD,所以,△ACD的周长=AD+CD+AC=AB+AC,解答出即可
    解:
    ∵DE是BC的垂直平分线,
    ∴BD=CD,
    ∴AB=AD+BD=AD+CD,
    ∴△ACD的周长=AD+CD+AC=AB+AC=8cm;
    故答案为8
    考点:线段垂直平分线的性质
    点评:本题主要考查了线段垂直平分线的性质和三角形的周长,掌握线段的垂直平分线上的点到线段两端点的距离相等
    16、
    【解析】垂径定理,勾股定理,锐角三角函数的定义。
    【分析】如图,

    设AB与CD相交于点E,则根据直径AB=26,得出半径OC=13;由CD=24,CD⊥AB,根据垂径定理得出CE=12;在Rt△OCE中,利用勾股定理求出OE=5;再根据正弦函数的定义,求出sin∠OCE的度数:

    17、.
    【解析】
    根据题意画出图形,由,,根据三角形法则,即可求得的长,又由点G是△ABC的重心,根据重心的性质,即可求得.
    【详解】
    如图:BD是△ABC的中线,
    ∵,
    ∴=,
    ∵,
    ∴=﹣,
    ∵点G是△ABC的重心,
    ∴==﹣,
    故答案为: ﹣.

    【点睛】
    本题考查了三角形的重心的性质:三角形的重心到三角形顶点的距离是它到对边中点的距离的2倍,本题也考查了向量的加法及其几何意义,是基础题目.
    18、-1.
    【解析】
    因为一元二次方程的常数项是已知的,可直接利用两根之积的等式求解.
    【详解】
    ∵一元二次方程x2+mx+1=0的一个根为-1,设另一根为x1,
    由根与系数关系:-1•x1=1,
    解得x1=-1.
    故答案为-1.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、 (1)点A在直线l上,理由见解析;(2)≤t≤4.
    【解析】
    (1)由题意得点B、A坐标,把点A的横坐标x=-1代入解析式y=2x+4得出y的值,即可得出点A在直线l上;
    (2)当直线l经过点D时,设l的解析式代入数值解出即可
    【详解】
    (1)此时点A在直线l上.
    ∵BC=AB=2,点O为BC中点,
    ∴点B(-1,0),A(-1,2).
    把点A的横坐标x=-1代入解析式y=2x+4,得
    y=2,等于点A的纵坐标2,
    ∴此时点A在直线l上.
    (2)由题意可得,点D(1,2),及点M(-2,0),
    当直线l经过点D时,设l的解析式为y=kx+t(k≠0),
    ∴解得
    由(1)知,当直线l经过点A时,t=4.
    ∴当直线l与AD边有公共点时,t的取值范围是≤t≤4.

    【点睛】
    本题考查的知识点是一次函数综合题,解题的关键是熟练的掌握一次函数综合题.
    20、(1);(2)每件销售价为16元时,每天的销售利润最大,最大利润是144元.
    【解析】
    根据题可设出一般式,再由图中数据带入可得答案,根据题目中的x的取值可得结果.②由总利润=数量×单间商品的利润可得函数式,可得解析式为一元二次式,配成顶点式可求出最大利润时的销售价,即可得出答案.
    【详解】
    (1).
    (2) 根据题意,得:


    ∴当时,随x的增大而增大

    ∴当时,取得最大值,最大值是144
    答:每件销售价为16元时,每天的销售利润最大,最大利润是144元.
    【点睛】
    熟悉掌握图中所给信息以及列方程组是解决本题的关键.
    21、(1)5;(2)﹣2≤x<﹣.
    【解析】
    (1)原式第一项利用乘方的意义计算,第二项利用特殊角的三角函数值以及二次根式的乘法计算,第三项利用负整数指数幂法则计算,最后一项利用零指数幂法则计算,然后根据实数的运算法则计算即可得到结果;
    (2)先求出两个不等式的解集,再找出解集的公共部分即可.
    【详解】
    (1)原式

    =5;
    (2)解不等式①得,x≥﹣2,
    解不等式②得,
    所以不等式组的解集是
    用数轴表示为:

    【点睛】
    本题考查了实数的混合运算,特殊角的三角函数值,负整数指数幂,零指数幂,不等式组的解法,是综合题,但难度不大,计算时要注意运算符号的处理以及解集公共部分的确定.
    22、(1)∠EAD的余切值为;(2)=.
    【解析】
    (1)在Rt△ADB中,根据AB=13,cos∠BAC=,求出AD的长,由勾股定理求出BD的长,进而可求出DE的长,然后根据余切的定义求∠EAD的余切即可;
    (2)过D作DG∥AF交BC于G,由平行线分线段成比例定理可得CD:AD=CG:FG=3:5,从而可设CD=3x,AD=5x,再由EF∥DG,BE=ED, 可知BF=FG=5x,然后可求BF:CF的值.
    【详解】
    (1)∵BD⊥AC,
    ∴∠ADE=90°,
    Rt△ADB中,AB=13,cos∠BAC=,
    ∴AD=5, 由勾股定理得:BD=12,
    ∵E是BD的中点,
    ∴ED=6,
    ∴∠EAD的余切==;
    (2)过D作DG∥AF交BC于G,
    ∵AC=8,AD=5, ∴CD=3,
    ∵DG∥AF,
    ∴=,
    设CD=3x,AD=5x,
    ∵EF∥DG,BE=ED,
    ∴BF=FG=5x,
    ∴==.

    【点睛】
    本题考查了勾股定理,锐角三角函数的定义,平行线分线段成比例定理.解(1)的关键是熟练掌握锐角三角函数的概念,解(2)的关键是熟练掌握平行线分线段成比例定理.
    23、(1)150,(1)证明见解析(3)
    【解析】
    (1)根据旋转变换的性质得到△PAP′为等边三角形,得到∠P′PC=90°,根据勾股定理解答即可;
    (1)如图1,作将△ABP绕点A逆时针旋转110°得到△ACP′,连接PP′,作AD⊥PP′于D,根据余弦的定义得到PP′=PA,根据勾股定理解答即可;
    (3)与(1)类似,根据旋转变换的性质、勾股定理和余弦、正弦的关系计算即可.
    试题解析:
    【详解】
    解:(1)∵△ABP≌△ACP′,
    ∴AP=AP′,
    由旋转变换的性质可知,∠PAP′=60°,P′C=PB,
    ∴△PAP′为等边三角形,
    ∴∠APP′=60°,
    ∵∠PAC+∠PCA=×60° =30°,
    ∴∠APC=150°,
    ∴∠P′PC=90°,
    ∴PP′1+PC1=P′C1,
    ∴PA1+PC1=PB1,
    故答案为150,PA1+PC1=PB1;
    (1)如图,作°,使,连接,.过点A作AD⊥于D点.
    ∵°,
    即,
    ∴.
    ∵AB=AC,,
    ∴.

    ∴,°.
    ∵AD⊥,
    ∴°.
    ∴在Rt中,.
    ∴.
    ∵°,
    ∴°.
    ∴°.
    ∴在Rt中,.
    ∴;
    (3)如图1,与(1)的方法类似,
    作将△ABP绕点A逆时针旋转α得到△ACP′,连接PP′,
    作AD⊥PP′于D,
    由旋转变换的性质可知,∠PAP′=α,P′C=PB,
    ∴∠APP′=90°-,
    ∵∠PAC+∠PCA=,
    ∴∠APC=180°-,
    ∴∠P′PC=(180°-)-(90°-)=90°,
    ∴PP′1+PC1=P′C1,
    ∵∠APP′=90°-,
    ∴PD=PA•cos(90°-)=PA•sin,
    ∴PP′=1PA•sin,
    ∴4PA1sin1+PC1=PB1,
    故答案为4PA1sin1+PC1=PB1.
    【点睛】
    本题考查的是旋转变换的性质、等边三角形的性质、勾股定理的应用,掌握等边三角形的性质、旋转变换的性质、灵活运用类比思想是解题的关键.
    24、(1)1;(2)证明见解析;(1)点坐标为.
    【解析】
    由点B的坐标,利用反比例函数图象上点的坐标特征可求出k值;
    设A点坐标为,则D点坐标为,P点坐标为,C点坐标为,进而可得出PB,PC,PA,PD的长度,由四条线段的长度可得出,结合可得出∽,由相似三角形的性质可得出,再利用“同位角相等,两直线平行”可证出;
    由四边形ABCD的面积和的面积相等可得出,利用三角形的面积公式可得出关于a的方程,解之取其负值,再将其代入P点的坐标中即可求出结论.
    【详解】
    解:点在反比例函数的图象,

    故答案为:1.
    证明:反比例函数解析式为,
    设A点坐标为
    轴于点C,轴于点D,
    点坐标为,P点坐标为,C点坐标为,
    ,,,,
    ,,

    又,
    ∽,



    解:四边形ABCD的面积和的面积相等,


    整理得:,
    解得:,舍去,
    点坐标为.
    【点睛】
    本题考查了反比例函数图象上点的坐标特征、相似三角形的判定与性质、平行线的判定以及三角形的面积,解题关键是:根据点的坐标,利用反比例函数图象上点的坐标特征求出k值;利用相似三角形的判定定理找出∽;由三角形的面积公式,找出关于a的方程.
    25、(1)证明见解析;(2)四边形AEMF是菱形,证明见解析.
    【解析】
    (1)求简单的线段相等,可证线段所在的三角形全等,即证△ABE≌△ADF;
    (2)由于四边形ABCD是正方形,易得∠ECO=∠FCO=45°,BC=CD;联立(1)的结论,可证得EC=CF,根据等腰三角形三线合一的性质可证得OC(即AM)垂直平分EF;已知OA=OM,则EF、AM互相平分,再根据一组邻边相等的平行四边形是菱形,即可判定四边形AEMF是菱形.
    【详解】
    (1)证明:∵四边形ABCD是正方形,
    ∴AB=AD,∠B=∠D=90°,
    在Rt△ABE和Rt△ADF中,
    ∵,
    ∴Rt△ADF≌Rt△ABE(HL)
    ∴BE=DF;
    (2)四边形AEMF是菱形,理由为:
    证明:∵四边形ABCD是正方形,
    ∴∠BCA=∠DCA=45°(正方形的对角线平分一组对角),
    BC=DC(正方形四条边相等),
    ∵BE=DF(已证),
    ∴BC-BE=DC-DF(等式的性质),
    即CE=CF,
    在△COE和△COF中,

    ∴△COE≌△COF(SAS),
    ∴OE=OF,
    又OM=OA,
    ∴四边形AEMF是平行四边形(对角线互相平分的四边形是平行四边形),
    ∵AE=AF,
    ∴平行四边形AEMF是菱形.
    26、(1)坡底C点到大楼距离AC的值为20米;(2)斜坡CD的长度为80-120米.
    【解析】
    分析:(1)在直角三角形ABC中,利用锐角三角函数定义求出AC的长即可;
    (2)过点D作DF⊥AB于点F,则四边形AEDF为矩形,得AF=DE,DF=AE.利用DF=AE=AC+CE求解即可.
    详解:(1)在直角△ABC中,∠BAC=90°,∠BCA=60°,AB=60米,则AC=(米)
    答:坡底C点到大楼距离AC的值是20米.
    (2)过点D作DF⊥AB于点F,则四边形AEDF为矩形,

    ∴AF=DE,DF=AE.
    设CD=x米,在Rt△CDE中,DE=x米,CE=x米
    在Rt△BDF中,∠BDF=45°,
    ∴BF=DF=AB-AF=60-x(米)
    ∵DF=AE=AC+CE,
    ∴20+x=60-x
    解得:x=80-120(米)
    故斜坡CD的长度为(80-120)米.
    点睛:此题考查了解直角三角形-仰角俯角问题,坡度坡角问题,熟练掌握勾股定理是解本题的关键.
    27、(1)证明见解析(2)
    【解析】
    试题分析:(1)先根据四边形ABCD是矩形,得出AD∥BC,∠PDO=∠QBO,再根据O为BD的中点得出△POD≌△QOB,即可证得OP=OQ;
    (2)根据已知条件得出∠A的度数,再根据AD=8cm,AB=6cm,得出BD和OD的长,再根据四边形PBQD是菱形时,利用勾股定理即可求出t的值,判断出四边形PBQD是菱形.
    试题解析:(1)证明:因为四边形ABCD是矩形,
    所以AD∥BC,
    所以∠PDO=∠QBO,
    又因为O为BD的中点,
    所以OB=OD,
    在△POD与△QOB中,
    ∠PDO=∠QBO,OB=OD,∠POD=∠QOB,
    所以△POD≌△QOB,
    所以OP=OQ.
    (2)解:PD=8-t,
    因为四边形PBQD是菱形,
    所以PD=BP=8-t,
    因为四边形ABCD是矩形,
    所以∠A=90°,
    在Rt△ABP中,
    由勾股定理得:,
    即,
    解得:t=,
    即运动时间为秒时,四边形PBQD是菱形.
    考点:矩形的性质;菱形的性质;全等三角形的判断和性质勾股定理.

    相关试卷

    云南省楚雄州—重点名校2021-2022学年中考数学四模试卷含解析: 这是一份云南省楚雄州—重点名校2021-2022学年中考数学四模试卷含解析,共24页。试卷主要包含了下列事件中是必然事件的是,下列说法错误的是,某同学将自己7次体育测试成绩等内容,欢迎下载使用。

    江苏省金坛市重点达标名校2021-2022学年中考数学四模试卷含解析: 这是一份江苏省金坛市重点达标名校2021-2022学年中考数学四模试卷含解析,共22页。试卷主要包含了答题时请按要求用笔,如果,下列运算正确的是等内容,欢迎下载使用。

    2022年内蒙古鄂尔多斯市中考数学四模试卷含解析: 这是一份2022年内蒙古鄂尔多斯市中考数学四模试卷含解析,共18页。试卷主要包含了二次函数y=ax2+bx+c等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map