内蒙古自治区赤峰市2021-2022学年中考二模数学试题含解析
展开
这是一份内蒙古自治区赤峰市2021-2022学年中考二模数学试题含解析,共26页。试卷主要包含了下列运算正确的是,尺规作图要求等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.已知点A(1﹣2x,x﹣1)在第二象限,则x的取值范围在数轴上表示正确的是( )
A. B.
C. D.
2.函数的自变量x的取值范围是( )
A. B. C. D.
3.如图,一圆弧过方格的格点A、B、C,在方格中建立平面直角坐标系,使点A的坐标为(﹣3,2),则该圆弧所在圆心坐标是( )
A.(0,0) B.(﹣2,1) C.(﹣2,﹣1) D.(0,﹣1)
4.如图,在Rt△ABC中,∠B=90º,AB=6,BC=8,点D在BC上,以AC为对角线的所有□ADCE中,DE的最小值是( )
A.4 B.6 C.8 D.10
5.要使分式有意义,则x的取值范围是( )
A.x= B.x> C.x< D.x≠
6.如图,正方形被分割成四部分,其中I、II为正方形,III、IV为长方形,I、II的面积之和等于III、IV面积之和的2倍,若II的边长为2,且I的面积小于II的面积,则I的边长为( )
A.4 B.3 C. D.
7.下列运算正确的是( )
A.a•a2=a2 B.(ab)2=ab C.3﹣1= D.
8.如图,线段AB两个端点的坐标分别为A(4,4),B(6,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C和D的坐标分别为( )
A.(2,2),(3,2) B.(2,4),(3,1)
C.(2,2),(3,1) D.(3,1),(2,2)
9.如图,已知AB∥DE,∠ABC=80°,∠CDE=140°,则∠C=( )
A.50° B.40° C.30° D.20°
10.尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;
Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.
如图是按上述要求排乱顺序的尺规作图:
则正确的配对是( )
A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣Ⅲ B.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣Ⅰ
C.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣Ⅰ D.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ
11.如图1、2、3分别表示甲、乙、丙三人由A地到B地的路线图,已知
甲的路线为:A→C→B;
乙的路线为:A→D→E→F→B,其中E为AB的中点;
丙的路线为:A→I→J→K→B,其中J在AB上,且AJ>JB.
若符号[→]表示[直线前进],则根据图1、图2、图3的数据,判断三人行进路线长度的大小关系为( )
A.甲=乙=丙 B.甲<乙<丙 C.乙<丙<甲 D.丙<乙<甲
12.一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是( )
A. B. C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.对于一切不小于2的自然数n,关于x的一元二次方程x2﹣(n+2)x﹣2n2=0的两个根记作an,bn(n≥2),则______
14.如图,⊙O在△ABC三边上截得的弦长相等,∠A=70°,则∠BOC=_____度.
15.一个多边形的每个内角都等于150°,则这个多边形是_____边形.
16.观察下列各等式:
……
根据以上规律可知第11行左起第一个数是__.
17.有下列各式:①;②;③;④.其中,计算结果为分式的是_____.(填序号)
18.直线y=﹣x+1分别交x轴,y轴于A、B两点,则△AOB的面积等于___.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,在△ABC中,AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B、M两点的⊙O交BC于点G,交AB于点F,FB恰为⊙O的直径.
(1)判断AE与⊙O的位置关系,并说明理由;
(2)若BC=6,AC=4CE时,求⊙O的半径.
20.(6分)2013年3月,某煤矿发生瓦斯爆炸,该地救援队立即赶赴现场进行救援,救援队利用生命探测仪在地面A、B两个探测点探测到C处有生命迹象.已知A、B两点相距4米,探测线与地面的夹角分别是30°和45°,试确定生命所在点C的深度.(精确到0.1米,参考数据:)
21.(6分)如图,在平行四边形ABCD中,DB⊥AB,点E是BC边的中点,过点E作EF⊥CD,垂足为F,交AB的延长线于点G.
(1)求证:四边形BDFG是矩形;
(2)若AE平分∠BAD,求tan∠BAE的值.
22.(8分)某高中进行“选科走班”教学改革,语文、数学、英语三门为必修学科,另外还需从物理、化学、生物、政治、历史、地理(分别记为A、B、C、D、E、F)六门选修学科中任选三门,现对该校某班选科情况进行调查,对调查结果进行了分析统计,并制作了两幅不完整的统计图.
请根据以上信息,完成下列问题:该班共有学生人;请将条形统计图补充完整;该班某同学物理成绩特别优异,已经从选修学科中选定物理,还需从余下选修学科中任意选择两门,请用列表或画树状图的方法,求出该同学恰好选中化学、历史两科的概率.
23.(8分)已知△ABC内接于⊙O,AD平分∠BAC.
(1)如图1,求证:;
(2)如图2,当BC为直径时,作BE⊥AD于点E,CF⊥AD于点F,求证:DE=AF;
(3)如图3,在(2)的条件下,延长BE交⊙O于点G,连接OE,若EF=2EG,AC=2,求OE的长.
24.(10分)如图,在平面直角坐标系中,圆M经过原点O,直线与x轴、y轴分别相交于A,B两点.
(1)求出A,B两点的坐标;
(2)若有一抛物线的对称轴平行于y轴且经过点M,顶点C在圆M上,开口向下,且经过点B,求此抛物线的函数解析式;
(3)设(2)中的抛物线交轴于D、E两点,在抛物线上是否存在点P,使得S△PDE=S△ABC?若存在,请求出点P的坐标;若不存在,请说明理由.
25.(10分)某中学为了了解在校学生对校本课程的喜爱情况,随机调查了部分学生对五类校本课程的喜爱情况,要求每位学生只能选择一类最喜欢的校本课程,根据调查结果绘制了如下的两个不完整统计图.请根据图中所提供的信息,完成下列问题:
(1)本次被调查的学生的人数为 ;
(2)补全条形统计图
(3)扇形统计图中,类所在扇形的圆心角的度数为 ;
(4)若该中学有2000名学生,请估计该校最喜爱两类校本课程的学生约共有多少名.
26.(12分)如图,半圆O的直径AB=5cm,点M在AB上且AM=1cm,点P是半圆O上的动点,过点B作BQ⊥PM交PM(或PM的延长线)于点Q.设PM=xcm,BQ=ycm.(当点P与点A或点B重合时,y的值为0)小石根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小石的探究过程,请补充完整:
(1)通过取点、画图、测量,得到了x与y的几组值,如下表:
x/cm
1
1.5
2
2.5
3
3.5
4
y/cm
0
3.7
______
3.8
3.3
2.5
______
(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
(3)结合画出的函数图象,解决问题:当BQ与直径AB所夹的锐角为60°时,PM的长度约为______cm.
27.(12分)如图,已知△ABC中,AB=AC=5,cosA=.求底边BC的长.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
先分别求出每一个不等式的解集,再根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.
【详解】
解:根据题意,得: ,
解不等式①,得:x>,
解不等式②,得:x>1,
∴不等式组的解集为x>1,
故选:B.
【点睛】
本题主要考查解一元一次不等式组,关键要掌握解一元一次不等式的方法,牢记确定不等式组解集方法.
2、D
【解析】
根据二次根式的意义,被开方数是非负数.
【详解】
根据题意得,
解得.
故选D.
【点睛】
本题考查了函数自变量的取值范围的确定和分式的意义.函数自变量的范围一般从三个方面考虑:
(1)当函数表达式是整式时,自变量可取全体实数;
(2)当函数表达式是分式时,考虑分式的分母不能为0;
(3)当函数表达式是二次根式时,被开方数非负数.
3、C
【解析】
如图:分别作AC与AB的垂直平分线,相交于点O,
则点O即是该圆弧所在圆的圆心.
∵点A的坐标为(﹣3,2),
∴点O的坐标为(﹣2,﹣1).
故选C.
4、B
【解析】
平行四边形ADCE的对角线的交点是AC的中点O,当OD⊥BC时,OD最小,即DE最小,根据三角形中位线定理即可求解.
【详解】
平行四边形ADCE的对角线的交点是AC的中点O,当OD⊥BC时,OD最小,即DE最小。
∵OD⊥BC,BC⊥AB,
∴OD∥AB,
又∵OC=OA,
∴OD是△ABC的中位线,
∴OD=AB=3,
∴DE=2OD=6.
故选:B.
【点睛】
本题考查了平行四边形的性质,解题的关键是利用三角形中位线定理进行求解.
5、D
【解析】
本题主要考查分式有意义的条件:分母不能为0,即3x−7≠0,解得x.
【详解】
∵3x−7≠0,
∴x≠.
故选D.
【点睛】
本题考查的是分式有意义的条件:当分母不为0时,分式有意义.
6、C
【解析】
设I的边长为x,根据“I、II的面积之和等于III、IV面积之和的2倍”列出方程并解方程即可.
【详解】
设I的边长为x
根据题意有
解得或(舍去)
故选:C.
【点睛】
本题主要考查一元二次方程的应用,能够根据题意列出方程是解题的关键.
7、C
【解析】
根据同底数幂的乘法法则对A进行判断;根据积的乘方对B进行判断;根据负整数指数幂的意义对C进行判断;根据二次根式的加减法对D进行判断.
【详解】
解:A、原式=a3,所以A选项错误;
B、原式=a2b2,所以B选项错误;
C、原式=,所以C选项正确;
D、原式=2,所以D选项错误.
故选:C.
【点睛】
本题考查了二次根式的加减法:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.也考查了整式的运算.
8、C
【解析】
直接利用位似图形的性质得出对应点坐标乘以得出即可.
【详解】
解:∵线段AB两个端点的坐标分别为A(4,4),B(6,2),
以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,
∴端点的坐标为:(2,2),(3,1).
故选C.
【点睛】
本题考查位似变换;坐标与图形性质,数形结合思想解题是本题的解题关键.
9、B
【解析】
试题解析:延长ED交BC于F,
∵AB∥DE,
∴
在△CDF中,
故
故选B.
10、D
【解析】
【分析】分别利用过直线外一点作这条直线的垂线作法以及线段垂直平分线的作法和过直线上一点作这条直线的垂线、角平分线的作法分别得出符合题意的答案.
【详解】Ⅰ、过直线外一点作这条直线的垂线,观察可知图②符合;
Ⅱ、作线段的垂直平分线,观察可知图③符合;
Ⅲ、过直线上一点作这条直线的垂线,观察可知图④符合;
Ⅳ、作角的平分线,观察可知图①符合,
所以正确的配对是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ,
故选D.
【点睛】本题主要考查了基本作图,正确掌握基本作图方法是解题关键.
11、A
【解析】
分析:由角的度数可以知道2、3中的两个三角形的对应边都是平行的,所以图2,图3中的三角形都和图1中的三角形相似.而且图2三角形全等,图3三角形相似.
详解:根据以上分析:所以图2可得AE=BE,AD=EF,DE=BE.
∵AE=BE=AB,∴AD=EF=AC,DE=BE=BC,∴甲=乙.
图3与图1中,三个三角形相似,所以 ====.
∵AJ+BJ=AB,∴AI+JK=AC,IJ+BK=BC,
∴甲=丙.∴甲=乙=丙.
故选A.
点睛:本题考查了的知识点是平行四边形的性质,解答本题的关键是利用相似三角形的平移,求得线段的关系.
12、B
【解析】
袋中一共7个球,摸到的球有7种可能,而且机会均等,其中有3个红球,因此摸到红球的概率为,故选B.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、﹣.
【解析】
试题分析:由根与系数的关系得:,
则, 则,
∴原式=.
点睛:本题主要考查的就是一元二次方程的韦达定理以及规律的整理,属于中等题型.解决这个问题的关键就是要想到使用韦达定理,然后根据计算的法则得出规律,从而达到简便计算的目的.
14、125
【解析】
解:过O作OM⊥AB,ON⊥AC,OP⊥BC,垂足分别为M,N,P
∵∠A=70°,∠B+∠C=180∘−∠A=110°
∵O在△ABC三边上截得的弦长相等,
∴OM=ON=OP,
∴O是∠B,∠C平分线的交点
∴∠BOC=180°−12(∠B+∠C)=180°−12×110°=125°.
故答案为:125°
【点睛】
本题考查了圆心角、弧、弦的关系, 三角形内角和定理, 角平分线的性质,解题的关键是掌握它们的性质和定理.
15、1
【解析】
根据多边形的内角和定理:180°•(n-2)求解即可.
【详解】
由题意可得:180°•(n-2)=150°•n,
解得n=1.
故多边形是1边形.
16、-1.
【解析】
观察规律即可解题.
【详解】
解:第一行=12=1,第二行=22=4,第三行=32=9...
∴第n行=n2,第11行=112=121,
又∵左起第一个数比右侧的数大一,
∴第11行左起第一个数是-1.
【点睛】
本题是一道规律题,属于简单题,认真审题找到规律是解题关键.
17、②④
【解析】
根据分式的定义,将每个式子计算后,即可求解.
【详解】
=1不是分式,=,=3不是分式,=故选②④.
【点睛】
本题考查分式的判断,解题的关键是清楚分式的定义.
18、.
【解析】
先求得直线y=﹣x+1与x轴,y轴的交点坐标,再根据三角形的面积公式求得△AOB的面积即可.
【详解】
∵直线y=﹣x+1分别交x轴、y轴于A、B两点,
∴A、B点的坐标分别为(1,0)、(0,1),
S△AOB=OA•OB=×1×1=,
故答案为.
【点睛】
本题考查了直线与坐标轴的交点坐标及三角形的面积公式,正确求得直线y=﹣x+1与x轴、y轴的交点坐标是解决问题的关键.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)AE与⊙O相切.理由见解析.(2)2.1
【解析】
(1)连接OM,则OM=OB,利用平行的判定和性质得到OM∥BC,∠AMO=∠AEB,再利用等腰三角形的性质和切线的判定即可得证;
(2)设⊙O的半径为r,则AO=12﹣r,利用等腰三角形的性质和解直角三角形的有关知识得到AB=12,易证△AOM∽△ABE,根据相似三角形的性质即可求解.
【详解】
解:(1)AE与⊙O相切.
理由如下:
连接OM,则OM=OB,
∴∠OMB=∠OBM,
∵BM平分∠ABC,
∴∠OBM=∠EBM,
∴∠OMB=∠EBM,
∴OM∥BC,
∴∠AMO=∠AEB,
在△ABC中,AB=AC,AE是角平分线,
∴AE⊥BC,
∴∠AEB=90°,
∴∠AMO=90°,
∴OM⊥AE,
∴AE与⊙O相切;
(2)在△ABC中,AB=AC,AE是角平分线,
∴BE=BC,∠ABC=∠C,
∵BC=6,cosC=,
∴BE=3,cos∠ABC=,
在△ABE中,∠AEB=90°,
∴AB===12,
设⊙O的半径为r,则AO=12﹣r,
∵OM∥BC,
∴△AOM∽△ABE,
∴,
∴=,
解得:r=2.1,
∴⊙O的半径为2.1.
20、5.5米
【解析】
过点C作CD⊥AB于点D,设CD=x,在Rt△ACD中表示出AD,在Rt△BCD中表示出BD,再由AB=4米,即可得出关于x的方程,解出即可.
【详解】
解:过点C作CD⊥AB于点D,
设CD=x,
在Rt△ACD中,∠CAD=30°,则AD=CD=x.
在Rt△BCD中,∠CBD=45°,则BD=CD=x.
由题意得,x﹣x=4,
解得:.
答:生命所在点C的深度为5.5米.
21、(1)见解析;(2)
【解析】
(1)根据矩形的判定证明即可;
(2)根据平行四边形的性质和等边三角形的性质解答即可.
【详解】
证明:(1)∵BD⊥AB,EF⊥CD,
∴∠ABD=90°,∠EFD=90°,
根据题意,在▱ABCD中,AB∥CD,
∴∠BDC=∠ABD=90°,
∴BD∥GF,
∴四边形BDFG为平行四边形,
∵∠BDC=90°,
∴四边形BDFG为矩形;
(2)∵AE平分∠BAD,
∴∠BAE=∠DAE,
∵AD∥BC,
∴∠BEA=∠DAE,
∴∠BAE=∠BEA,
∴BA=BE,
∵在Rt△BCD中,点E为BC边的中点,
∴BE=ED=EC,
∵在▱ABCD中,AB=CD,
∴△ECD为等边三角形,∠C=60°,
∴,
∴.
【点睛】
本题考查了矩形的判定、等边三角形的判定和性质,根据平行四边形的性质和等边三角形的性质解答是解题关键.
22、(1)50人;(2)补图见解析;(3).
【解析】
分析:(1)根据化学学科人数及其所占百分比可得总人数;
(2)根据各学科人数之和等于总人数求得历史的人数即可;
(3)列表得出所有等可能结果,从中找到恰好选中化学、历史两科的结果数,再利用概率公式计算可得.
详解:(1)该班学生总数为10÷20%=50人;
(2)历史学科的人数为50﹣(5+10+15+6+6)=8人,
补全图形如下:
(3)列表如下:
化学
生物
政治
历史
地理
化学
生物、化学
政治、化学
历史、化学
地理、化学
生物
化学、生物
政治、生物
历史、生物
地理、生物
政治
化学、政治
生物、政治
历史、政治
地理、政治
历史
化学、历史
生物、历史
政治、历史
地理、历史
地理
化学、地理
生物、地理
政治、地理
历史、地理
由表可知,共有20种等可能结果,其中该同学恰好选中化学、历史两科的有2种结果,
所以该同学恰好选中化学、历史两科的概率为.
点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.
23、(1)证明见解析;(1)证明见解析;(3)1.
【解析】
(1)连接OB、OC、OD,根据圆心角与圆周角的性质得∠BOD=1∠BAD,∠COD=1∠CAD,又AD平分∠BAC,得∠BOD=∠COD,再根据圆周角相等所对的弧相等得出结论.
(1)过点O作OM⊥AD于点M,又一组角相等,再根据平行线的性质得出对应边成比例,进而得出结论;
(3)延长EO交AB于点H,连接CG,连接OA,BC为⊙O直径,则∠G=∠CFE=∠FEG=90°,四边形CFEG是矩形,得EG=CF,又AD平分∠BAC,再根据邻补角与余角的性质可得∠BAF=∠ABE,∠ACF=∠CAF,AE=BE,AF=CF,再根据直角三角形的三角函数计算出边的长,根据“角角边”证明出△HBO∽△ABC,根据相似三角形的性质得出对应边成比例,进而得出结论.
【详解】
(1)如图1,连接OB、OC、OD,
∵∠BAD和∠BOD是所对的圆周角和圆心角,
∠CAD和∠COD是所对的圆周角和圆心角,
∴∠BOD=1∠BAD,∠COD=1∠CAD,
∵AD平分∠BAC,
∴∠BAD=∠CAD,
∴∠BOD=∠COD,
∴=;
(1)如图1,过点O作OM⊥AD于点M,
∴∠OMA=90°,AM=DM,
∵BE⊥AD于点E,CF⊥AD于点F,
∴∠CFM=90°,∠MEB=90°,
∴∠OMA=∠MEB,∠CFM=∠OMA,
∴OM∥BE,OM∥CF,
∴BE∥OM∥CF,
∴,
∵OB=OC,
∴=1,
∴FM=EM,
∴AM﹣FM=DM﹣EM,
∴DE=AF;
(3)延长EO交AB于点H,连接CG,连接OA.
∵BC为⊙O直径,
∴∠BAC=90°,∠G=90°,
∴∠G=∠CFE=∠FEG=90°,
∴四边形CFEG是矩形,
∴EG=CF,
∵AD平分∠BAC,
∴∠BAF=∠CAF=×90°=45°,
∴∠ABE=180°﹣∠BAF﹣∠AEB=45°,
∠ACF=180°﹣∠CAF﹣∠AFC=45°,
∴∠BAF=∠ABE,∠ACF=∠CAF,
∴AE=BE,AF=CF,
在Rt△ACF中,∠AFC=90°,
∴sin∠CAF=,即sin45°=,
∴CF=1×=,
∴EG=,
∴EF=1EG=1,
∴AE=3,
在Rt△AEB中,∠AEB=90°,
∴AB==6,
∵AE=BE,OA=OB,
∴EH垂直平分AB,
∴BH=EH=3,
∵∠OHB=∠BAC,∠ABC=∠ABC
∴△HBO∽△ABC,
∴,
∴OH=1,
∴OE=EH﹣OH=3﹣1=1.
【点睛】
本题考查了相似三角形的判定与性质和圆的相关知识点,解题的关键是熟练的掌握相似三角形的判定与性质和圆的相关知识点.
24、(1)A(﹣8,0),B(0,﹣6);(2);(3)存在.P点坐标为(﹣4+,-1)或(﹣4﹣,-1)或(﹣4+,1)或(﹣4﹣,1)时,使得.
【解析】
分析:(1)令已知的直线的解析式中x=0,可求出B点坐标,令y=0,可求出A点坐标;(2)根据A、B的坐标易得到M点坐标,若抛物线的顶点C在⊙M上,那么C点必为抛物线对称轴与⊙O的交点;根据A、B的坐标可求出AB的长,进而可得到⊙M的半径及C点的坐标,再用待定系数法求解即可;
(3)在(2)中已经求得了C点坐标,即可得到AC、BC的长;由圆周角定理:
∠ ACB=90°,所以此题可根据两直角三角形的对应直角边的不同来求出不同的P点坐标.
本题解析:(1)对于直线,当时,;当时,
所以A(﹣8,0),B(0,﹣6);
(2)在Rt△AOB中,AB==10,∵∠AOB=90°,∴AB为⊙M的直径,
∴点M为AB的中点,M(﹣4,﹣3),∵MC∥y轴,MC=5,∴C(﹣4,2),
设抛物线的解析式为y=a(x+4)²+2,
把B(0,﹣6)代入得16a+2=﹣6,解得a= ,
∴抛物线的解析式为 ,即;
(3)存在.
当y=0时, ,解得x,=﹣2,x,=﹣6,
∴D(﹣6,0),E(﹣2,0),
,
设P(t,-6),
∵
∴=20,
即||=1,当=-1,
解得, ,
此时P点坐标为(﹣4+,-1)或(﹣4﹣,-1);
当时 ,解得=﹣4+,=﹣4﹣;
此时P点坐标为(﹣4+,1)或(﹣4﹣,1).
综上所述,P点坐标为(﹣4+,-1)或(﹣4﹣,-1)或(﹣4+,1)或(﹣4﹣,1)时,使得.
点睛:本题考查了二次函数的综合应用及顶点式求二次函数的解析式和一元二次方程的解法,本题的综合性较强,注意分类讨论的思想应用.
25、 (1)300;(2)见解析;(3)108°;(4)约有840名.
【解析】
(1)根据A种类人数及其占总人数百分比可得答案;
(2)用总人数乘以B的百分比得出其人数,即可补全条形图;
(3)用360°乘以C类人数占总人数的比例可得;
(4)总人数乘以C、D两类人数占样本的比例可得答案.
【详解】
解:(1)本次被调查的学生的人数为69÷23%=300(人),
故答案为:300;
(2)喜欢B类校本课程的人数为300×20%=60(人),
补全条形图如下:
(3)扇形统计图中,C类所在扇形的圆心角的度数为360°×=108°,
故答案为:108°;
(4)∵2000×=840,
∴估计该校喜爱C,D两类校本课程的学生共有840名.
【点睛】
本题考查条形统计图、扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解题关键.条形统计图能清楚地表示出每个项目的数据.
26、(1)4,1;(2)见解析;(3)1.1或3.2
【解析】
(1)当x=2时,PM⊥AB,此时Q与M重合,BQ=BM=4,当x=4时,点P与B重合,此时BQ=1.
(2)利用描点法画出函数图象即可;
(3)根据直角三角形31度角的性质,求出y=2,观察图象写出对应的x的值即可;
【详解】
(1)当x=2时,PM⊥AB,此时Q与M重合,BQ=BM=4,
当x=4时,点P与B重合,此时BQ=1.
故答案为4,1.
(2)函数图象如图所示:
(3)如图,
在Rt△BQM中,∵∠Q=91°,∠MBQ=61°,
∴∠BMQ=31°,
∴BQ=BM=2,
观察图象可知y=2时,对应的x的值为1.1或3.2.
故答案为1.1或3.2.
【点睛】
本题考查圆的综合题,垂径定理,直角三角形的性质,解题的关键是灵活运用所解题的关键是理解题意,学会用测量法、图象法解决实际问题.
27、
【解析】
过点B作BD⊥AC,在△ABD中由cosA=可计算出AD的值,进而求出BD的值,再由勾股定理求出BC的值.
【详解】
解:
过点B作BD⊥AC,垂足为点D,
在Rt△ABD中,,
∵,AB=5,
∴AD=AB·cosA=5×=3,
∴BD=4,
∵AC=5,
∴DC=2,
∴BC=.
【点睛】
本题考查了锐角的三角函数和勾股定理的运用.
相关试卷
这是一份2024年内蒙古自治区赤峰市中考数学试题,共36页。
这是一份2024年内蒙古自治区赤峰市中考数学试题,共8页。
这是一份2024年内蒙古自治区赤峰市中考数学试题,共8页。