内蒙古自治区呼伦贝尔市2021-2022学年中考联考数学试题含解析
展开2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.老师随机抽查了学生读课外书册数的情况,绘制成条形图和不完整的扇形图,其中条形图被墨迹遮盖了一部分,则条形图中被遮盖的数是( )
A.5 B.9 C.15 D.22
2.如果t>0,那么a+t与a的大小关系是( )
A.a+t>a B.a+t 3.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为( )
A.8×1012 B.8×1013 C.8×1014 D.0.8×1013
4.股市有风险,投资需谨慎.截至今年五月底,我国股市开户总数约95000000,正向1亿挺进,95000000用科学计数法表示为( )
A.9.5×106 B.9.5×107 C.9.5×108 D.9.5×109
5.计算﹣2+3的结果是( )
A.1 B.﹣1 C.﹣5 D.﹣6
6.PM2.5是大气压中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为( )
A.0.25×10﹣5 B.0.25×10﹣6 C.2.5×10﹣5 D.2.5×10﹣6
7.如图,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则供选择的地址有( )
A.1处 B.2处 C.3处 D.4处
8.如图,Rt△AOB中,∠AOB=90°,OA在x轴上,OB在y轴上,点A、B的坐标分别为(,0),(0,1),把Rt△AOB沿着AB对折得到Rt△AO′B,则点O′的坐标为( )
A. B. C. D.
9.如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为( )
A. B. C. D.
10.若二元一次方程组的解为则的值为( )
A.1 B.3 C. D.
11.等腰三角形三边长分别为,且是关于的一元二次方程的两根,则的值为( )
A.9 B.10 C.9或10 D.8或10
12.不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征.甲同学:它有4个面是三角形;乙同学:它有8条棱.该模型的形状对应的立体图形可能是( )
A.三棱柱 B.四棱柱 C.三棱锥 D.四棱锥
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.关于的一元二次方程有两个相等的实数根,则________.
14.我们知道,四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D'处,则点C的对应点C'的坐标为_____.
15.要使式子有意义,则的取值范围是__________.
16.计算的结果是__________.
17.若a+b=3,ab=2,则a2+b2=_____.
18.如图所示:在平面直角坐标系中,△OCB的外接圆与y轴交于A(0,),∠OCB=60°,∠COB=45°,则OC= .
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)为了保护视力,学校开展了全校性的视力保健活动,活动前,随机抽取部分学生,检查他们的视力,结果如图所示(数据包括左端点不包括右端点,精确到0.1);活动后,再次检查这部分学生的视力,结果如表所示
分组
频数
4.0≤x<4.2
2
4.2≤x<4.4
3
4.4≤x<4.6
5
4.6≤x<4.8
8
4.8≤x<5.0
17
5.0≤x<5.2
5
(1)求活动所抽取的学生人数;
(2)若视力达到4.8及以上为达标,计算活动前该校学生的视力达标率;
(3)请选择适当的统计量,从两个不同的角度评价视力保健活动的效果.
20.(6分)如图,在平面直角坐标xOy中,正比例函数y=kx的图象与反比例函数y=的图象都经过点A(2,﹣2).
(1)分别求这两个函数的表达式;
(2)将直线OA向上平移3个单位长度后与y轴交于点B,与反比例函数图象在第四象限内的交点为C,连接AB,AC,求点C的坐标及△ABC的面积.
21.(6分)如图,已知一次函数的图象与反比例函数的图象交于点,且与轴交于点;点在反比例函数的图象上,以点为圆心,半径为的作圆与轴,轴分别相切于点、.
(1)求反比例函数和一次函数的解析式;
(2)请连结,并求出的面积;
(3)直接写出当时,的解集.
22.(8分)已知,抛物线(为常数).
(1)抛物线的顶点坐标为( , )(用含的代数式表示);
(2)若抛物线经过点且与图象交点的纵坐标为3,请在图1中画出抛物线的简图,并求的函数表达式;
(3)如图2,规矩的四条边分别平行于坐标轴,,若抛物线经过两点,且矩形在其对称轴的左侧,则对角线的最小值是 .
23.(8分)为有效治理污染,改善生态环境,山西太原成为国内首个实现纯电动出租车的城市,绿色环保的电动出租车受到市民的广泛欢迎,给市民的生活带来了很大的方便,下表是行驶路程在15公里以内时普通燃油出租车和纯电动出租车的运营价格:
车型
起步公里数
起步价格
超出起步公里数后的单价
普通燃油型
3
13元
2.3元/公里
纯电动型
3
8元
2元/公里
张先生每天从家打出租车去单位上班(路程在15公里以内),结果发现,正常情况下乘坐纯电动出租车比乘坐燃油出租车平均每公里节省0.8元,求张先生家到单位的路程.
24.(10分)一辆高铁与一辆动车组列车在长为1320千米的京沪高速铁路上运行,已知高铁列车比动车组列车平均速度每小时快99千米,且高铁列车比动车组列车全程运行时间少3小时,求这辆高铁列车全程运行的时间和平均速度.
25.(10分)为了了解市民“获取新闻的最主要途径”,某市记者开展了一次抽样调查,根据调査结果绘制了如下尚不完整的统计图:
根据以上信息解答下列问题:这次接受调查的市民总人数是_______人;扇形统计图中,“电视”所对应的圆心角的度数是_________;请补全条形统计图;若该市约有80万人,请你估计其中将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数.
26.(12分)如图,抛物线y=ax2+ax﹣12a(a<0)与x轴交于A、B两点(A在B的左侧),与y轴交于点C,点M是第二象限内抛物线上一点,BM交y轴于N.
(1)求点A、B的坐标;
(2)若BN=MN,且S△MBC=,求a的值;
(3)若∠BMC=2∠ABM,求的值.
27.(12分)已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.
【详解】
课外书总人数:6÷25%=24(人),
看5册的人数:24﹣5﹣6﹣4=9(人),
故选B.
【点睛】
本题考查了统计图与概率,熟练掌握条形统计图与扇形统计图是解题的关键.
2、A
【解析】
试题分析:根据不等式的基本性质即可得到结果.
t>0,
∴a+t>a,
故选A.
考点:本题考查的是不等式的基本性质
点评:解答本题的关键是熟练掌握不等式的基本性质1:不等式两边同时加或减去同一个整式,不等号方向不变.
3、B
【解析】
80万亿用科学记数法表示为8×1.
故选B.
点睛:本题考查了科学计数法,科学记数法的表示形式为 的形式,其中 ,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
4、B
【解析】
试题分析: 15000000=1.5×2.故选B.
考点:科学记数法—表示较大的数
5、A
【解析】
根据异号两数相加的法则进行计算即可.
【详解】
解:因为-2,3异号,且|-2|<|3|,所以-2+3=1.
故选A.
【点睛】
本题主要考查了异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值.
6、D
【解析】
根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0).
【详解】
解: 0.0000025第一个有效数字前有6个0(含小数点前的1个0),从而.
故选D.
7、D
【解析】
到三条相互交叉的公路距离相等的地点应是三条角平分线的交点.把三条公路的中心部位看作三角形,那么这个三角形两个内角平分线的交点以及三个外角两两平分线的交点都满足要求.
【详解】
满足条件的有:
(1)三角形两个内角平分线的交点,共一处;
(2)三个外角两两平分线的交点,共三处.
如图所示,
故选D.
【点睛】
本题考查了角平分线的性质;这是一道生活联系实际的问题,解答此类题目时最直接的判断就是三角形的角平分线,很容易漏掉外角平分线,解答时一定要注意,不要漏解.
8、B
【解析】
连接OO′,作O′H⊥OA于H.只要证明△OO′A是等边三角形即可解决问题.
【详解】
连接OO′,作O′H⊥OA于H,
在Rt△AOB中,∵tan∠BAO==,
∴∠BAO=30°,
由翻折可知,∠BAO′=30°,
∴∠OAO′=60°,
∵AO=AO′,
∴△AOO′是等边三角形,
∵O′H⊥OA,
∴OH=,
∴OH′=OH=,
∴O′(,),
故选B.
【点睛】
本题考查翻折变换、坐标与图形的性质、等边三角形的判定和性质、锐角三角函数等知识,解题的关键是发现特殊三角形,利用特殊三角形解决问题.
9、D
【解析】
过C点作CD⊥AB,垂足为D,根据旋转性质可知,∠B′=∠B,把求tanB′的问题,转化为在Rt△BCD中求tanB.
【详解】
过C点作CD⊥AB,垂足为D.
根据旋转性质可知,∠B′=∠B.
在Rt△BCD中,tanB=,
∴tanB′=tanB=.
故选D.
【点睛】
本题考查了旋转的性质,旋转后对应角相等;三角函数的定义及三角函数值的求法.
10、D
【解析】
先解方程组求出,再将代入式中,可得解.
【详解】
解:
,
得,
所以,
因为
所以.
故选D.
【点睛】
本题考查二元一次方程组的解,解题的关键是观察两方程的系数,从而求出a-b的值,本题属于基础题型.
11、B
【解析】
由题意可知,等腰三角形有两种情况:当a,b为腰时,a=b,由一元二次方程根与系数的关系可得a+b=6,所以a=b=3,ab=9=n-1,解得n=1;当2为腰时,a=2(或b=2),此时2+b=6(或a+2=6),解得b=4(a=4),这时三边为2,2,4,不符合三角形三边关系:两边之和大于第三边,两边之差小于第三边,故不合题意.所以n只能为1.
故选B
12、D
【解析】
试题分析:根据有四个三角形的面,且有8条棱,可知是四棱锥.而三棱柱有两个三角形的面,四棱柱没有三角形的面,三棱锥有四个三角形的面,但是只有6条棱.
故选D
考点:几何体的形状
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、-1.
【解析】
根据根的判别式计算即可.
【详解】
解:依题意得:
∵关于的一元二次方程有两个相等的实数根,
∴= =4-41(-k)=4+4k=0
解得,k=-1.
故答案为:-1.
【点睛】
本题考查了一元二次方程根的判别式,当=>0时,方程有两个不相等的实数根;当==0时,方程有两个相等的实数根;当=<0时,方程无实数根.
14、(2,)
【解析】
过C作CH于H,由题意得2AO=AD’,所以∠D’AO=60°,AO=1,AD’=2,勾股定理知OD’=,BH=AO所以C’(2,).
故答案为(2,).
15、
【解析】
根据二次根式被开方数必须是非负数的条件可得关于x的不等式,解不等式即可得.
【详解】
由题意得:
2-x≥0,
解得:x≤2,
故答案为x≤2.
16、1
【解析】
分析:利用同分母分式的减法法则计算,分子整理后分解因式,约分即可得到结果.
详解:原式
故答案为:1.
点睛:本题考查了分式的加减运算,分式的加减运算关键是通分,通分的关键是找最简公分母.
17、1
【解析】
根据a2+b2=(a+b)2-2ab,代入计算即可.
【详解】
∵a+b=3,ab=2,
∴a2+b2=(a+b)2﹣2ab=9﹣4=1.
故答案为:1.
【点睛】
本题考查对完全平方公式的变形应用能力,要熟记有关完全平方的几个变形公式.
18、1+
【解析】
试题分析:连接AB,由圆周角定理知AB必过圆心M,Rt△ABO中,易知∠BAO=∠OCB=60°,已知了OA=,即可求得OB的长;
过B作BD⊥OC,通过解直角三角形即可求得OD、BD、CD的长,进而由OC=OD+CD求出OC的长.
解:连接AB,则AB为⊙M的直径.
Rt△ABO中,∠BAO=∠OCB=60°,
∴OB=OA=×=.
过B作BD⊥OC于D.
Rt△OBD中,∠COB=45°,
则OD=BD=OB=.
Rt△BCD中,∠OCB=60°,
则CD=BD=1.
∴OC=CD+OD=1+.
故答案为1+.
点评:此题主要考查了圆周角定理及解直角三角形的综合应用能力,能够正确的构建出与已知和所求相关的直角三角形是解答此题的关键.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)所抽取的学生人数为40人(2)37.5%(3)①视力x<4.4之间活动前有9人,活动后只有5人,人数明显减少.②活动前合格率37.5%,活动后合格率55%,说明视力保健活动的效果比较好
【解析】
【分析】(1)求出频数之和即可;
(2)根据合格率=合格人数÷总人数×100%即可得解;
(3)从两个不同的角度分析即可,答案不唯一.
【详解】(1)∵频数之和=3+6+7+9+10+5=40,
∴所抽取的学生人数为40人;
(2)活动前该校学生的视力达标率=×100%=37.5%;
(3)①视力x<4.4之间活动前有9人,活动后只有5人,人数明显减少;
②活动前合格率37.5%,活动后合格率55%,说明视力保健活动的效果比较好.
【点睛】本题考查了频数分布直方图、用样本估计总体等知识,熟知频数、合格率等相关概念是解题的关键.
20、(1)反比例函数表达式为,正比例函数表达式为;
(2),.
【解析】
试题分析:(1)将点A坐标(2,-2)分别代入y=kx、y=求得k、m的值即可;(2)由题意得平移后直线解析式,即可知点B坐标,联立方程组求解可得第四象限内的交点C得坐标,可将△ABC的面积转化为△OBC的面积.
试题解析:()把代入反比例函数表达式,
得,解得,
∴反比例函数表达式为,
把代入正比例函数,
得,解得,
∴正比例函数表达式为.
()直线由直线向上平移个单位所得,
∴直线的表达式为,
由,解得或,
∵在第四象限,
∴,
连接,
∵,
,
,
.
21、(1),;(2)4;(3).
【解析】
(1)连接CB,CD,依据四边形BODC是正方形,即可得到B(1,2),点C(2,2),利用待定系数法即可得到反比例函数和一次函数的解析式;
(2)依据OB=2,点A的横坐标为-4,即可得到△AOB的面积为:2×4×=4;
(3)依据数形结合思想,可得当x<1时,k1x+b−>1的解集为:-4<x<1.
【详解】
解:(1)如图,连接,,
∵⊙C与轴,轴相切于点D,,且半径为,
,,
∴四边形是正方形,
,
,点,
把点代入反比例函数中,
解得:,
∴反比例函数解析式为:,
∵点在反比例函数上,
把代入中,可得,
,
把点和分别代入一次函数中,
得出:,
解得:,
∴一次函数的表达式为:;
(2)如图,连接,
,点的横坐标为,
的面积为:;
(3)由,根据图象可知:当时,的解集为:.
【点睛】
本题考查了反比例函数与一次函数的交点依据待定系数法求函数解析式,解题的关键是求出C,B点坐标.
22、(1);(2)图象见解析,或;(3)
【解析】
(1)将抛物线的解析式配成顶点式,即可得出顶点坐标;
(2)根据抛物线经过点M,用待定系数法求出抛物线的解析式,即可得出图象,然后将纵坐标3代入抛物线的解析式中,求出横坐标,然后将点再代入反比例函数的表达式中即可求出反比例函数的表示式;
(3)设出A的坐标,表示出C,D的坐标,得到CD的长度,根据题意找到CD的最小值,因为AD的长度不变,所以当CD最小时,对角线AC最小,则答案可求.
【详解】
解:(1),
抛物线的顶点的坐标为.
故答案为:
(2)将代入抛物线的解析式得:
解得:,
抛物线的解析式为.
抛物线的大致图象如图所示:
将代入得:
,
解得:或
抛物线与反比例函数图象的交点坐标为或.
将代入得:,
.
将代入得:,
.
综上所述,反比例函数的表达式为或.
(3)设点的坐标为,
则点的坐标为,
的坐标为.
的长随的增大而减小.
矩形在其对称轴的左侧,抛物线的对称轴为,
当时,的长有最小值,的最小值.
的长度不变,
当最小时,有最小值.
的最小值
故答案为:.
【点睛】
本题主要考查二次函数,反比例函数与几何综合,掌握二次函数,反比例函数的图象与性质是解题的关键.
23、8.2 km
【解析】
首先设小明家到单位的路程是x千米,根据题意列出方程进行求解.
【详解】
解:设小明家到单位的路程是x千米.
依题意,得13+2.3(x-3)=8+2(x-3)+0.8x.
解得:x=8.2
答:小明家到单位的路程是8.2千米.
【点睛】
本题考查一元一次方程的应用,找准等量关系是解题关键.
24、这辆高铁列车全程运行的时间为1小时,平均速度为264千米/小时.
【解析】
设动车组列车的平均速度为x千米/小时,则高铁列车的平均速度为(x+99)千米/小时,根据时间=路程÷速度结合高铁列车比动车组列车全程运行时间少3小时,即可得出关于x的分式方程,解之经检验后即可得出结论.
【详解】
设动车组列车的平均速度为x千米/小时,则高铁列车的平均速度为(x+99)千米/小时,
根据题意得:﹣=3,
解得:x1=161,x2=﹣264(不合题意,舍去),
经检验,x=161是原方程的解,
∴x+99=264,1320÷(x+99)=1.
答:这辆高铁列车全程运行的时间为1小时,平均速度为264千米/小时.
【点睛】
本题考查了列分式方程解实际问题的运用及分式方程的解法的运用,解答时根据条件建立方程是关键,解答时对求出的根必须检验,这是解分式方程的必要步骤.
25、 (1)1000;(2)54°;(3)见解析;(4)32万人
【解析】
根据“每项人数=总人数×该项所占百分比”,“所占角度=360度×该项所占百分比”来列出式子,即可解出答案.
【详解】
解:
(1)400÷40%=1000(人)
(2)360°×=54°,
故答案为:1000人; 54° ;
(3)1-10%-9%-26%-40%=15%
15%×1000=150(人)
(4)80×=52.8(万人)
答:总人数为52.8万人.
【点睛】
本题考查获取图表信息的能力,能够根据图表找到必要条件是解题关键.
26、(1)A(﹣4,0),B(3,0);(2);(3).
【解析】
(1)设y=0,可求x的值,即求A,B的坐标;
(2)作MD⊥x轴,由CO∥MD可得OD=3,把x=-3代入解析式可得M点坐标,可得ON的长度,根据S△BMC=,可求a的值;
(3)过M点作ME∥AB,设NO=m,=k,可以用m,k表示CO,EO,MD,ME,可求M点坐标,代入可得k,m,a的关系式,由CO=2km+m=-12a,可得方程组,解得k,即可求结果.
【详解】
(1)设y=0,则0=ax2+ax﹣12a (a<0),
∴x1=﹣4,x2=3,
∴A(﹣4,0),B(3,0)
(2)如图1,作MD⊥x轴,
∵MD⊥x轴,OC⊥x轴,
∴MD∥OC,
∴=且NB=MN,
∴OB=OD=3,
∴D(﹣3,0),
∴当x=﹣3时,y=﹣6a,
∴M(﹣3,﹣6a),
∴MD=﹣6a,
∵ON∥MD
∴,
∴ON=﹣3a,
根据题意得:C(0,﹣12a),
∵S△MBC=,
∴(﹣12a+3a)×6=,
a=﹣,
(3)如图2:过M点作ME∥AB,
∵ME∥AB,
∴∠EMB=∠ABM且∠CMB=2∠ABM,
∴∠CME=∠NME,且ME=ME,∠CEM=∠NEM=90°,
∴△CME≌△MNE,
∴CE=EN,
设NO=m,=k(k>0),
∵ME∥AB,
∴==k,
∴ME=3k,EN=km=CE,
∴EO=km+m,
CO=CE+EN+ON=2km+m=﹣12a,
即,
∴M(﹣3k,km+m),
∴km+m=a(9k2﹣3k﹣12),
(k+1)×=(k+1)(9k﹣12),
∴=9k-12,
∴k=,
∴.
【点睛】
本题考查的知识点是函数解析式的求法,二次函数的图象和性质,是二次函数与解析几何知识的综合应用,难度较大.
27、1
【解析】
先提取公因式ab,再根据完全平方公式进行二次分解,然后代入数据进行计算即可得解.
【详解】
解:a3b+2a2b2+ab3
=ab(a2+2ab+b2)
=ab(a+b)2,
将a+b=3,ab=2代入得,ab(a+b)2=2×32=1.
故代数式a3b+2a2b2+ab3的值是1.
内蒙古自治区赤峰市2021-2022学年中考二模数学试题含解析: 这是一份内蒙古自治区赤峰市2021-2022学年中考二模数学试题含解析,共26页。试卷主要包含了下列运算正确的是,尺规作图要求等内容,欢迎下载使用。
2022届内蒙古自治区呼伦贝尔市满洲里市中考数学押题卷含解析: 这是一份2022届内蒙古自治区呼伦贝尔市满洲里市中考数学押题卷含解析,共24页。
2021-2022学年内蒙古自治区呼伦贝尔市、兴安盟达标名校中考数学适应性模拟试题含解析: 这是一份2021-2022学年内蒙古自治区呼伦贝尔市、兴安盟达标名校中考数学适应性模拟试题含解析,共21页。试卷主要包含了考生要认真填写考场号和座位序号,下列说法正确的是,在同一平面内,下列说法等内容,欢迎下载使用。