内蒙古自治区通辽市霍林郭勒市2021-2022学年中考一模数学试题含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.下列计算中,正确的是( )
A.a•3a=4a2 B.2a+3a=5a2
C.(ab)3=a3b3 D.7a3÷14a2=2a
2.在1、﹣1、3、﹣2这四个数中,最大的数是( )
A.1 B.﹣1 C.3 D.﹣2
3.如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A→B→C的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示△ADP的面积y(cm2)关于x(cm)的函数关系的图象是( )
A. B. C. D.
4.已知电流I(安培)、电压U(伏特)、电阻R(欧姆)之间的关系为,当电压为定值时,I关于R的函数图象是( )
A. B. C. D.
5.如图1,将三角板的直角顶点放在直角尺的一边上,Ð1=30°,Ð2=50°,则Ð3的度数为
A.80° B.50° C.30° D.20°
6.下列计算,结果等于a4的是( )
A.a+3a B.a5﹣a C.(a2)2 D.a8÷a2
7.如图,矩形是由三个全等矩形拼成的,与,,,,分别交于点,设,,的面积依次为,,,若,则的值为( )
A.6 B.8 C.10 D.12
8.PM2.5是指大气中直径小于或等于2.5μm(1μm=0.000001m)的颗粒物,也称为可入肺颗粒物,它们含有大量的有毒、有害物质,对人体健康和大气环境质量有很大危害.2.5μm用科学记数法可表示为( )
A. B. C. D.
9.若一个函数的图象是经过原点的直线,并且这条直线过点(-3,2a)和点(8a,-3),则a的值为( )
A. B. C. D.±
10.工人师傅用一张半径为24cm,圆心角为150°的扇形铁皮做成一个圆锥的侧面,则这个圆锥的高为( )cm.
A. B. C. D.
11.在以下三个图形中,根据尺规作图的痕迹,能判断射线AD平分∠BAC的是( )
A.图2 B.图1与图2 C.图1与图3 D.图2与图3
12.在,,则的值为( )
A. B. C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.因式分解:9x﹣x2=_____.
14.株洲市城区参加2018年初中毕业会考的人数约为10600人,则数10600用科学记数法表示为_____.
15.地球上的海洋面积约为361000000km1,则科学记数法可表示为_______km1.
16.一个多边形的内角和是,则它是______边形.
17.若+(y﹣2018)2=0,则x﹣2+y0=_____.
18.将一次函数的图象平移,使其经过点(2,3),则所得直线的函数解析式是______.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)(定义)如图1,A,B为直线l同侧的两点,过点A作直线1的对称点A′,连接A′B交直线l于点P,连接AP,则称点P为点A,B关于直线l的“等角点”.
(运用)如图2,在平面直坐标系xOy中,已知A(2,),B(﹣2,﹣)两点.
(1)C(4,),D(4,),E(4,)三点中,点 是点A,B关于直线x=4的等角点;
(2)若直线l垂直于x轴,点P(m,n)是点A,B关于直线l的等角点,其中m>2,∠APB=α,求证:tan=;
(3)若点P是点A,B关于直线y=ax+b(a≠0)的等角点,且点P位于直线AB的右下方,当∠APB=60°时,求b的取值范围(直接写出结果).
20.(6分)如图,在矩形ABCD中,对角线AC,BD相交于点O.画出△AOB平移后的三角形,其平移后的方向为射线AD的方向,平移的距离为AD的长.观察平移后的图形,除了矩形ABCD外,还有一种特殊的平行四边形?请证明你的结论.
21.(6分)计算:|﹣1|+﹣(1﹣)0﹣()﹣1.
22.(8分)综合与实践﹣﹣旋转中的数学
问题背景:在一次综合实践活动课上,同学们以两个矩形为对象,研究相似矩形旋转中的问题:已知矩形ABCD∽矩形A′B′C′D′,它们各自对角线的交点重合于点O,连接AA′,CC′.请你帮他们解决下列问题:
观察发现:(1)如图1,若A′B′∥AB,则AA′与CC′的数量关系是______;
操作探究:(2)将图1中的矩形ABCD保持不动,矩形A′B′C′D′绕点O逆时针旋转角度α(0°<α≤90°),如图2,在矩形A′B′C′D′旋转的过程中,(1)中的结论还成立吗?若成立,请证明;若不成立,请说明理由;
操作计算:(3)如图3,在(2)的条件下,当矩形A′B′C′D′绕点O旋转至AA′⊥A′D′时,若AB=6,BC=8,A′B′=3,求AA′的长.
23.(8分)如图1,点P是平面直角坐标系中第二象限内的一点,过点P作PA⊥y轴于点A,点P绕点A顺时针旋转60°得到点P',我们称点P'是点P的“旋转对应点”.
(1)若点P(﹣4,2),则点P的“旋转对应点”P'的坐标为 ;若点P的“旋转对应点”P'的坐标为(﹣5,16)则点P的坐标为 ;若点P(a,b),则点P的“旋转对应点”P'的坐标为 ;
(2)如图2,点Q是线段AP'上的一点(不与A、P'重合),点Q的“旋转对应点”是点Q',连接PP'、QQ',求证:PP'∥QQ';
(3)点P与它的“旋转对应点”P'的连线所在的直线经过点(,6),求直线PP'与x轴的交点坐标.
24.(10分)如图1,2分别是某款篮球架的实物图与示意图,已知底座BC=0.60米,底座BC与支架AC所成的角∠ACB=75°,支架AF的长为2.50米米,篮板顶端F点到篮框D的距离FD=1.35米,篮板底部支架HF与支架AF所成的角∠FHE=60°,求篮框D到地面的距离(精确到0.01米).
(参考数据:cos75°≈0.2588, sin75°≈0.9659,tan75°≈3.732,,)
25.(10分)平面直角坐标系xOy中,横坐标为a的点A在反比例函数y1═(x>0)的图象上,点A′与点A关于点O对称,一次函数y2=mx+n的图象经过点A′.
(1)设a=2,点B(4,2)在函数y1、y2的图象上.
①分别求函数y1、y2的表达式;
②直接写出使y1>y2>0成立的x的范围;
(2)如图①,设函数y1、y2的图象相交于点B,点B的横坐标为3a,△AA'B的面积为16,求k的值;
(3)设m=,如图②,过点A作AD⊥x轴,与函数y2的图象相交于点D,以AD为一边向右侧作正方形ADEF,试说明函数y2的图象与线段EF的交点P一定在函数y1的图象上.
26.(12分)解分式方程:=
27.(12分)初三(5)班综合实践小组去湖滨花园测量人工湖的长,如图A、D是人工湖边的两座雕塑,AB、BC是湖滨花园的小路,小东同学进行如下测量,B点在A点北偏东60°方向,C点在B点北偏东45°方向,C点在D点正东方向,且测得AB=20米,BC=40米,求AD的长.(≈1.732,≈1.414,结果精确到0.01米)
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】
根据同底数幂的运算法则进行判断即可.
【详解】
解:A、a•3a=3a2,故原选项计算错误;
B、2a+3a=5a,故原选项计算错误;
C、(ab)3=a3b3,故原选项计算正确;
D、7a3÷14a2=a,故原选项计算错误;
故选C.
【点睛】
本题考点:同底数幂的混合运算.
2、C
【解析】
有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.
【详解】
解:根据有理数比较大小的方法,可得
-2<-1<1<1,
∴在1、-1、1、-2这四个数中,最大的数是1.
故选C.
【点睛】
此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.
3、B
【解析】
△ADP的面积可分为两部分讨论,由A运动到B时,面积逐渐增大,由B运动到C时,面积不变,从而得出函数关系的图象.
【详解】
解:当P点由A运动到B点时,即0≤x≤2时,y=×2x=x,
当P点由B运动到C点时,即2<x<4时,y=×2×2=2,
符合题意的函数关系的图象是B;
故选B.
【点睛】
本题考查了动点函数图象问题,用到的知识点是三角形的面积、一次函数,在图象中应注意自变量的取值范围.
4、C
【解析】
根据反比例函数的图像性质进行判断.
【详解】
解:∵,电压为定值,
∴I关于R的函数是反比例函数,且图象在第一象限,
故选C.
【点睛】
本题考查反比例函数的图像,掌握图像性质是解题关键.
5、D
【解析】
试题分析:根据平行线的性质,得∠4=∠2=50°,再根据三角形的外角的性质∠3=∠4-∠1=50°-30°=20°.故答案选D.
考点:平行线的性质;三角形的外角的性质.
6、C
【解析】
根据同底数幂的除法法则:底数不变,指数相减;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘进行计算即可.
【详解】
A.a+3a=4a,错误;
B.a5和a不是同类项,不能合并,故此选项错误;
C.(a2)2=a4,正确;
D.a8÷a2=a6,错误.
故选C.
【点睛】
本题主要考查了同底数幂的乘除法,以及幂的乘方,关键是正确掌握计算法则.
7、B
【解析】
由条件可以得出△BPQ∽△DKM∽△CNH,可以求出△BPQ与△DKM的相似比为,△BPQ与△CNH相似比为,由相似三角形的性质,就可以求出,从而可以求出.
【详解】
∵矩形AEHC是由三个全等矩形拼成的,
∴AB=BD=CD,AE∥BF∥DG∥CH,
∴∠BQP=∠DMK=∠CHN,
∴△ABQ∽△ADM,△ABQ∽△ACH,
∴,,
∵EF=FG= BD=CD,AC∥EH,
∴四边形BEFD、四边形DFGC是平行四边形,
∴BE∥DF∥CG,
∴∠BPQ=∠DKM=∠CNH,
又∵∠BQP=∠DMK=∠CHN,
∴△BPQ∽△DKM,△BPQ∽△CNH,
∴,,
即,,
,
∴,即,
解得:,
∴,
故选:B.
【点睛】
本题考查了矩形的性质,平行四边形的判定和性质,相似三角形的判定与性质,三角形的面积公式,得出S2=4S1,S3=9S1是解题关键.
8、C
【解析】
试题分析:大于0而小于1的数用科学计数法表示,10的指数是负整数,其绝对值等于第一个不是0的数字前所有0的个数.
考点:用科学计数法计数
9、D
【解析】
根据一次函数的图象过原点得出一次函数式正比例函数,设一次函数的解析式为y=kx,把点(−3,2a)与点(8a,−3)代入得出方程组 ,求出方程组的解即可.
【详解】
解:设一次函数的解析式为:y=kx,
把点(−3,2a)与点(8a,−3)代入得出方程组 ,
由①得:,
把③代入②得: ,
解得:.
故选:D.
【点睛】
本题考查了用待定系数法求一次函数的解析式,主要考查学生运用性质进行计算的能力.
10、B
【解析】
分析:直接利用圆锥的性质求出圆锥的半径,进而利用勾股定理得出圆锥的高.
详解:由题意可得圆锥的母线长为:24cm,
设圆锥底面圆的半径为:r,则2πr=,
解得:r=10,
故这个圆锥的高为:(cm).
故选B.
点睛:此题主要考查了圆锥的计算,正确得出圆锥的半径是解题关键.
11、C
【解析】
【分析】根据角平分线的作图方法可判断图1,根据图2的作图痕迹可知D为BC中点,不是角平分线,图3中根据作图痕迹可通过判断三角形全等推导得出AD是角平分线.
【详解】图1中,根据作图痕迹可知AD是角平分线;
图2中,根据作图痕迹可知作的是BC的垂直平分线,则D为BC边的中点,因此AD不是角平分线;
图3:由作图方法可知AM=AE,AN=AF,∠BAC为公共角,∴△AMN≌△AEF,
∴∠3=∠4,
∵AM=AE,AN=AF,∴MF=EN,又∵∠MDF=∠EDN,∴△FDM≌△NDE,
∴DM=DE,
又∵AD是公共边,∴△ADM≌△ADE,
∴∠1=∠2,即AD平分∠BAC,
故选C.
【点睛】本题考查了尺规作图,三角形全等的判定与性质等,熟知角平分的尺规作图方法、全等三角形的判定与性质是解题的关键.
12、A
【解析】
本题可以利用锐角三角函数的定义求解即可.
【详解】
解:tanA=,
∵AC=2BC,
∴tanA=.
故选:A.
【点睛】
本题考查了正切函数的概念,掌握直角三角形中角的对边与邻边的比是关键 .
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、x(9﹣x)
【解析】
试题解析:
故答案为
点睛:常见的因式分解的方法:提取公因式法,公式法,十字相乘法.
14、1.06×104
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:10600=1.06×104,
故答案为:1.06×104
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
15、3.61×2
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
将361 000 000用科学记数法表示为3.61×2.
故答案为3.61×2.
16、六
【解析】
试题分析:这个正多边形的边数是n,则(n﹣2)•180°=720°,解得:n=1.则这个正多边形的边数是六,故答案为六.
考点:多边形内角与外角.
17、1
【解析】
直接利用偶次方的性质以及二次根式的性质分别化简得出答案.
【详解】
解:∵+(y﹣1018)1=0,
∴x﹣1=0,y﹣1018=0,
解得:x=1,y=1018,
则x﹣1+y0=1﹣1+10180=1+1=1.
故答案为:1.
【点睛】
此题主要考查了非负数的性质,正确得出x,y的值是解题关键.
18、
【解析】
试题分析:解:设y=x+b,
∴3=2+b,解得:b=1.
∴函数解析式为:y=x+1.故答案为y=x+1.
考点:一次函数
点评:本题要注意利用一次函数的特点,求出未知数的值从而求得其解析式,求直线平移后的解析式时要注意平移时k的值不变.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)C(2)(3)b<﹣且b≠﹣2或b>
【解析】
(1)先求出B关于直线x=4的对称点B′的坐标,根据A、B′的坐标可得直线AB′的解析式,把x=4代入求出P点的纵坐标即可得答案;(2)如图:过点A作直线l的对称点A′,连A′B′,交直线l于点P,作BH⊥l于点H,根据对称性可知∠APG=A′PG,由∠AGP=∠BHP=90°可证明△AGP∽△BHP,根据相似三角形对应边成比例可得m=
根据外角性质可知∠A=∠A′=,在Rt△AGP中,根据正切定义即可得结论;(3)当点P位于直线AB的右下方,∠APB=60°时,点P在以AB为弦,所对圆周为60°,且圆心在AB下方,若直线y=ax+b(a≠0)与圆相交,设圆与直线y=ax+b(a≠0)的另一个交点为Q
根据对称性质可证明△ABQ是等边三角形,即点Q为定点,若直线y=ax+b(a≠0)与圆相切,易得P、Q重合,所以直线y=ax+b(a≠0)过定点Q,连OQ,过点A、Q分别作AM⊥y轴,QN⊥y轴,垂足分别为M、N,可证明△AMO∽△ONQ,根据相似三角形对应边成比例可得ON、NQ的长,即可得Q点坐标,根据A、B、Q的坐标可求出直线AQ、BQ的解析式,根据P与A、B重合时b的值求出b的取值范围即可.
【详解】
(1)点B关于直线x=4的对称点为B′(10,﹣),
∴直线AB′解析式为:y=﹣,
当x=4时,y=,
故答案为:C
(2)如图,过点A作直线l的对称点A′,连A′B′,交直线l于点P
作BH⊥l于点H
∵点A和A′关于直线l对称
∴∠APG=∠A′PG
∵∠BPH=∠A′PG
∴∠APG=∠BPH
∵∠AGP=∠BHP=90°
∴△AGP∽△BHP
∴,即,
∴mn=2,即m=,
∵∠APB=α,AP=AP′,
∴∠A=∠A′=,
在Rt△AGP中,tan
(3)如图,当点P位于直线AB的右下方,∠APB=60°时,
点P在以AB为弦,所对圆周为60°,且圆心在AB下方
若直线y=ax+b(a≠0)与圆相交,设圆与直线y=ax+b(a≠0)的另一个交点为Q
由对称性可知:∠APQ=∠A′PQ,
又∠APB=60°
∴∠APQ=∠A′PQ=60°
∴∠ABQ=∠APQ=60°,∠AQB=∠APB=60°
∴∠BAQ=60°=∠AQB=∠ABQ
∴△ABQ是等边三角形
∵线段AB为定线段
∴点Q为定点
若直线y=ax+b(a≠0)与圆相切,易得P、Q重合
∴直线y=ax+b(a≠0)过定点Q
连OQ,过点A、Q分别作AM⊥y轴,QN⊥y轴,垂足分别为M、N
∵A(2,),B(﹣2,﹣)
∴OA=OB=
∵△ABQ是等边三角形
∴∠AOQ=∠BOQ=90°,OQ=,
∴∠AOM+∠NOD=90°
又∵∠AOM+∠MAO=90°,∠NOQ=∠MAO
∵∠AMO=∠ONQ=90°
∴△AMO∽△ONQ
∴,
∴,
∴ON=2,NQ=3,∴Q点坐标为(3,﹣2)
设直线BQ解析式为y=kx+b
将B、Q坐标代入得
,
解得
,
∴直线BQ的解析式为:y=﹣,
设直线AQ的解析式为:y=mx+n,
将A、Q两点代入,
解得 ,
∴直线AQ的解析式为:y=﹣3,
若点P与B点重合,则直线PQ与直线BQ重合,此时,b=﹣,
若点P与点A重合,则直线PQ与直线AQ重合,此时,b=,
又∵y=ax+b(a≠0),且点P位于AB右下方,
∴b<﹣ 且b≠﹣2或b>.
【点睛】
本题考查对称性质、相似三角形的判定与性质、根据待定系数法求一次函数解析式及锐角三角函数正切的定义,熟练掌握相关知识是解题关键.
20、(1)如图所示见解析;(2)四边形OCED是菱形.理由见解析.
【解析】
(1)根据图形平移的性质画出平移后的△DEC即可;
(2)根据图形平移的性质得出AC∥DE,OA=DE,故四边形OCED是平行四边形,再由矩形的性质可知OA=OB,故DE=CE,由此可得出结论.
【详解】
(1)如图所示;
(2)四边形OCED是菱形.
理由:∵△DEC由△AOB平移而成,
∴AC∥DE,BD∥CE,OA=DE,OB=CE,
∴四边形OCED是平行四边形.
∵四边形ABCD是矩形,
∴OA=OB,
∴DE=CE,
∴四边形OCED是菱形.
【点睛】
本题考查了作图与矩形的性质,解题的关键是熟练的掌握矩形的性质与根据题意作图.
21、1
【解析】
试题分析:先分别计算绝对值,算术平方根,零指数幂和负指数幂,然后相加即可.
试题解析:
解:|﹣1|+﹣(1﹣)0﹣()﹣1
=1+3﹣1﹣2
=1.
点睛:本题考查了实数的计算,熟悉计算的顺序和相关的法则是解决此题的关键.
22、(1)AA′=CC′;(2)成立,证明见解析;(3)AA′=
【解析】
(1)连接AC、A′C′,根据题意得到点A、A′、C′、C在同一条直线上,根据矩形的性质得到OA=OC,OA′=OC′,得到答案;
(2)连接AC、A′C′,证明△A′OA≌△C′OC,根据全等三角形的性质证明;
(3)连接AC,过C作CE⊥AB′,交AB′的延长线于E,根据相似多边形的性质求出B′C′,根据勾股定理计算即可.
【详解】
(1)AA′=CC′,
理由如下:连接AC、A′C′,
∵矩形ABCD∽矩形A′B′C′D′,∠CAB=∠C′A′B′,
∵A′B′∥AB,
∴点A、A′、C′、C在同一条直线上,
由矩形的性质可知,OA=OC,OA′=OC′,
∴AA′=CC′,
故答案为AA′=CC′;
(2)(1)中的结论还成立,AA′=CC′,
理由如下:连接AC、A′C′,则AC、A′C′都经过点O,
由旋转的性质可知,∠A′OA=∠C′OC,
∵四边形ABCD和四边形A′B′C′D′都是矩形,
∴OA=OC,OA′=OC′,
在△A′OA和△C′OC中,
,
∴△A′OA≌△C′OC,
∴AA′=CC′;
(3)连接AC,过C作CE⊥AB′,交AB′的延长线于E,
∵矩形ABCD∽矩形A′B′C′D′,
∴,即,
解得,B′C′=4,
∵∠EB′C=∠B′C′C=∠E=90°,
∴四边形B′ECC′为矩形,
∴EC=B′C′=4,
在Rt△ABC中,AC==10,
在Rt△AEC中,AE==2,
∴AA′+B′E=2﹣3,又AA′=CC′=B′E,
∴AA′=.
【点睛】
本题考查的是矩形的性质、旋转变换的性质、全等三角形的判定和性质,掌握旋转变换的性质、矩形的性质是解题的关键.
23、(1)(﹣2,2+2),(﹣10,16﹣5),(,b﹣a);(2)见解析;(3)直线PP'与x轴的交点坐标(﹣,0)
【解析】
(1)①当P(-4,2)时,OA=2,PA=4,由旋转知,∠P'AH=30°,进而P'H=P'A=2,AH=P'H=2,即可得出结论;
②当P'(-5,16)时,确定出P'A=10,AH=5,由旋转知,PA=PA'=10,OA=OH-AH=16-5,即可得出结论;
③当P(a,b)时,同①的方法得,即可得出结论;
(2)先判断出∠BQQ'=60°,进而得出∠PAP'=∠PP'A=60°,即可得出∠P'QQ'=∠PAP'=60°,即可得出结论;
(3)先确定出yPP'=x+3,即可得出结论.
【详解】
解:(1)如图1,
①当P(﹣4,2)时,
∵PA⊥y轴,
∴∠PAH=90°,OA=2,PA=4,
由旋转知,P'A=4,∠PAP'=60°,
∴∠P'AH=30°,
在Rt△P'AH中,P'H=P'A=2,
∴AH=P'H=2,
∴OH=OA+AH=2+2,
∴P'(﹣2,2+2),
②当P'(﹣5,16)时,
在Rt△P'AH中,∠P'AH=30°,P'H=5,
∴P'A=10,AH=5,
由旋转知,PA=PA'=10,OA=OH﹣AH=16﹣5,
∴P(﹣10,16﹣5),
③当P(a,b)时,同①的方法得,P'(,b﹣a),
故答案为:(﹣2,2+2),(﹣10,16﹣5),(,b﹣a);
(2)如图2,过点Q作QB⊥y轴于B,
∴∠BQQ'=60°,
由题意知,△PAP'是等边三角形,
∴∠PAP'=∠PP'A=60°,
∵QB⊥y轴,PA⊥y轴,
∴QB∥PA,
∴∠P'QQ'=∠PAP'=60°,
∴∠P'QQ'=60°=∠PP'A,
∴PP'∥QQ';
(3)设yPP'=kx+b',
由题意知,k=,
∵直线经过点(,6),
∴b'=3,
∴yPP'=x+3,
令y=0,
∴x=﹣,
∴直线PP'与x轴的交点坐标(﹣,0).
【点睛】
此题是几何变换综合题,主要考查了含30度角的直角三角形的性质,旋转的性质,等边三角形的判定和性质,待定系数法,解本题的关键是理解新定义.
24、3.05米.
【解析】
延长FE交CB的延长线于M,过A作AG⊥FM于G,解直角三角形即可得到结论.
【详解】
延长FE交CB的延长线于M,过A作AG⊥FM于G,
在Rt△ABC中,tan∠ACB=,
∴AB=BC•tan75°=0.60×3.732=2.2392,
∴GM=AB=2.2392,
在Rt△AGF中,∵∠FAG=∠FHD=60°,sin∠FAG=,
∴sin60°=,
∴FG=2.165,
∴DM=FG+GM﹣DF≈3.05米.
答:篮框D到地面的距离是3.05米.
考点:解直角三角形的应用.
25、(1)y1=,y2=x﹣2;②2<x<4;(2)k=6;(3)证明见解析.
【解析】
分析:(1)由已知代入点坐标即可;
(2)面积问题可以转化为△AOB面积,用a、k表示面积问题可解;
(3)设出点A、A′坐标,依次表示AD、AF及点P坐标.
详解:(1)①由已知,点B(4,2)在y1═(x>0)的图象上
∴k=8
∴y1=
∵a=2
∴点A坐标为(2,4),A′坐标为(﹣2,﹣4)
把B(4,2),A(﹣2,﹣4)代入y2=mx+n得,
,
解得,
∴y2=x﹣2;
②当y1>y2>0时,y1=图象在y2=x﹣2图象上方,且两函数图象在x轴上方,
∴由图象得:2<x<4;
(2)分别过点A、B作AC⊥x轴于点C,BD⊥x轴于点D,连BO,
∵O为AA′中点,
S△AOB=S△AOA′=8
∵点A、B在双曲线上
∴S△AOC=S△BOD
∴S△AOB=S四边形ACDB=8
由已知点A、B坐标都表示为(a,)(3a,)
∴,
解得k=6;
(3)由已知A(a,),则A′为(﹣a,﹣).
把A′代入到y=,得:﹣,
∴n=,
∴A′B解析式为y=﹣.
当x=a时,点D纵坐标为,
∴AD=
∵AD=AF,
∴点F和点P横坐标为,
∴点P纵坐标为.
∴点P在y1═(x>0)的图象上.
点睛:本题综合考查反比例函数、一次函数图象及其性质,解答过程中,涉及到了面积转化方法、待定系数法和数形结合思想.
26、x=1
【解析】
分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
【详解】
方程两边都乘以x(x﹣2),得:x=1(x﹣2),
解得:x=1,
检验:x=1时,x(x﹣2)=1×1=1≠0,
则分式方程的解为x=1.
【点睛】
本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.
27、AD=38.28米.
【解析】
过点B作BE⊥DA,BF⊥DC,垂足分别为E、F,已知AD=AE+ED,则分别求得AE、DE的长即可求得AD的长.
【详解】
过点B作BE⊥DA,BF⊥DC,垂足分别为E,F,
由题意知,AD⊥CD
∴四边形BFDE为矩形
∴BF=ED
在Rt△ABE中,AE=AB•cos∠EAB
在Rt△BCF中,BF=BC•cos∠FBC
∴AD=AE+BF=20•cos60°+40•cos45°
=20×+40×=10+20
=10+20×1.414
=38.28(米).
即AD=38.28米.
【点睛】
解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.
2023年内蒙古通辽市霍林郭勒市中考数学二模试卷(含解析): 这是一份2023年内蒙古通辽市霍林郭勒市中考数学二模试卷(含解析),共29页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
2022年内蒙古自治区通辽市霍林郭勒市中考联考数学试卷含解析: 这是一份2022年内蒙古自治区通辽市霍林郭勒市中考联考数学试卷含解析,共22页。试卷主要包含了若=1,则符合条件的m有等内容,欢迎下载使用。
2022届内蒙古自治区通辽市霍林郭勒市重点达标名校中考数学押题试卷含解析: 这是一份2022届内蒙古自治区通辽市霍林郭勒市重点达标名校中考数学押题试卷含解析,共19页。试卷主要包含了若等式,汽车刹车后行驶的距离s等内容,欢迎下载使用。