搜索
    上传资料 赚现金
    英语朗读宝

    宁夏石嘴山市平罗县重点达标名校2021-2022学年中考数学五模试卷含解析

    宁夏石嘴山市平罗县重点达标名校2021-2022学年中考数学五模试卷含解析第1页
    宁夏石嘴山市平罗县重点达标名校2021-2022学年中考数学五模试卷含解析第2页
    宁夏石嘴山市平罗县重点达标名校2021-2022学年中考数学五模试卷含解析第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    宁夏石嘴山市平罗县重点达标名校2021-2022学年中考数学五模试卷含解析

    展开

    这是一份宁夏石嘴山市平罗县重点达标名校2021-2022学年中考数学五模试卷含解析,共19页。试卷主要包含了答题时请按要求用笔,计算±的值为等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(共10小题,每小题3分,共30分)
    1.已知一组数据:12,5,9,5,14,下列说法不正确的是( )
    A.平均数是9 B.中位数是9 C.众数是5 D.极差是5
    2.近似数精确到( )
    A.十分位 B.个位 C.十位 D.百位
    3.已知常数k<0,b>0,则函数y=kx+b,的图象大致是下图中的(  )
    A. B.
    C. D.
    4.已知关于x的一元二次方程mx2+2x-1=0有两个不相等的实数根,则m的取值范围是( ).
    A.m>-1且m≠0 B.m<1且m≠0 C.m<-1 D.m>1
    5.如图,A、B、C、D四个点均在⊙O上,∠AOD=70°,AO∥DC,则∠B的度数为( )

    A.40° B.45° C.50° D.55°
    6.若※是新规定的某种运算符号,设a※b=b 2 -a,则-2※x=6中x的值()
    A.4 B.8 C.2 D.-2
    7.下列二次根式中,为最简二次根式的是(  )
    A. B. C. D.
    8.计算±的值为(  )
    A.±3 B.±9 C.3 D.9
    9.等式成立的x的取值范围在数轴上可表示为(  )
    A. B. C. D.
    10.如图,已知是的角平分线,是的垂直平分线,,,则的长为( )

    A.6 B.5 C.4 D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.化简二次根式的正确结果是_____.
    12.用正三角形、正四边形和正六边形按如图所示的规律拼图案,即从第二个图案开始,每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个,则第n个图案中正三角形的个数为 (用含n的代数式表示).

    13.函数的图象不经过第__________象限.
    14.已知一元二次方程2x2﹣5x+1=0的两根为m,n,则m2+n2=_____.
    15.如图,在一次数学活动课上,小明用18个棱长为1的正方体积木搭成一个几何体,然后他请小亮用其他棱长为1的正方体积木在旁边再搭一个几何体,使小亮所搭几何体恰好和小明所搭几何体拼成一个无空隙的大长方体(不改变小明所搭几何体的形状).请从下面的A、B两题中任选一题作答,我选择__________.
    A、按照小明的要求搭几何体,小亮至少需要__________个正方体积木.
    B、按照小明的要求,小亮所搭几何体的表面积最小为__________.

    16.如图,在平面直角坐标系中,二次函数y=ax2+c(a≠0)的图象过正方形ABOC的三个顶点A,B,C,则ac的值是________.

    三、解答题(共8题,共72分)
    17.(8分)如图,已知,.求证.

    18.(8分)如图,AB为⊙O的直径,点D、E位于AB两侧的半圆上,射线DC切⊙O于点D,已知点E是半圆弧AB上的动点,点F是射线DC上的动点,连接DE、AE,DE与AB交于点P,再连接FP、FB,且∠AED=45°.求证:CD∥AB;填空:
    ①当∠DAE=   时,四边形ADFP是菱形;
    ②当∠DAE=   时,四边形BFDP是正方形.

    19.(8分)如图,抛物线y=﹣x2+5x+n经过点A(1,0),与y轴交于点B.
    (1)求抛物线的解析式;
    (2)P是y轴正半轴上一点,且△PAB是以AB为腰的等腰三角形,试求P点坐标.

    20.(8分)对于平面直角坐标系xOy中的点P和直线m,给出如下定义:若存在一点P,使得点P到直线m的距离等于1,则称P为直线m的平行点.
    (1)当直线m的表达式为y=x时,
    ①在点,,中,直线m的平行点是______;
    ②⊙O的半径为,点Q在⊙O上,若点Q为直线m的平行点,求点Q的坐标.
    (2)点A的坐标为(n,0),⊙A半径等于1,若⊙A上存在直线的平行点,直接写出n的取值范围.
    21.(8分)国家发改委公布的《商品房销售明码标价规定》,从2011年5月1日起商品房销售实行一套一标价.商品房销售价格明码标价后,可以自行降价、打折销售,但涨价必须重新申报.某市某楼盘准备以每平方米5000元的均价对外销售,由于新政策的出台,购房都持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4050元的均价开盘销售.求平均每次下调的百分率;某人准备以开盘均价购买一套100平方米的房子,开发商还给予以下两种优惠方案发供选择:
    ①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.5元,请问哪种方案更优惠?
    22.(10分)先化简,再求值:(1﹣)÷,其中x是不等式组的整数解
    23.(12分)如图①,在正方形ABCD中,△AEF的顶点E,F分别在BC,CD边上,高AG与正方形的边长相等,求∠EAF的度数.如图②,在Rt△ABD中,∠BAD=90°,AB=AD,点M,N是BD边上的任意两点,且∠MAN=45°,将△ABM绕点A逆时针旋转90°至△ADH位置,连接NH,试判断MN2,ND2,DH2之间的数量关系,并说明理由.在图①中,若EG=4,GF=6,求正方形ABCD的边长.

    24.“低碳生活,绿色出行”是我们倡导的一种生活方式,有关部门抽样调查了某单位员工上下班的交通方式,绘制了如下统计图:

    (1)填空:样本中的总人数为 ;开私家车的人数m= ;扇形统计图中“骑自行车”所在扇形的圆心角为 度;
    (2)补全条形统计图;
    (3)该单位共有2000人,积极践行这种生活方式,越来越多的人上下班由开私家车改为骑自行车.若步行,坐公交车上下班的人数保持不变,问原来开私家车的人中至少有多少人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数?



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、D
    【解析】
    分别计算该组数据的平均数、中位数、众数及极差后即可得到正确的答案
    平均数为(12+5+9+5+14)÷5=9,故选项A正确;
    重新排列为5,5,9,12,14,∴中位数为9,故选项B正确;
    5出现了2次,最多,∴众数是5,故选项C正确;
    极差为:14﹣5=9,故选项D错误.
    故选D
    2、C
    【解析】
    根据近似数的精确度:近似数5.0×102精确到十位.
    故选C.
    考点:近似数和有效数字
    3、D
    【解析】
    当k<0,b>0时,直线经过一、二、四象限,双曲线在二、四象限,由此确定正确的选项.
    【详解】
    解:∵当k<0,b>0时,直线与y轴交于正半轴,且y随x的增大而减小,
    ∴直线经过一、二、四象限,双曲线在二、四象限.
    故选D.
    【点睛】
    本题考查了一次函数、反比例函数的图象与性质.关键是明确系数与图象的位置的联系.
    4、A
    【解析】
    ∵一元二次方程mx2+2x-1=0有两个不相等的实数根,
    ∴m≠0,且22-4×m×(﹣1)>0,
    解得:m>﹣1且m≠0.
    故选A.
    【点睛】
    本题考查一元二次方程ax2+bx+c=0(a≠0)根的判别式:
    (1)当△=b2﹣4ac>0时,方程有两个不相等的实数根;
    (2)当△=b2﹣4ac=0时,方程有有两个相等的实数根;
    (3)当△=b2﹣4ac<0时,方程没有实数根.
    5、D
    【解析】
    试题分析:如图,

    连接OC,
    ∵AO∥DC,
    ∴∠ODC=∠AOD=70°,
    ∵OD=OC,
    ∴∠ODC=∠OCD=70°,
    ∴∠COD=40°,
    ∴∠AOC=110°,
    ∴∠B=∠AOC=55°.
    故选D.
    考点:1、平行线的性质;2、圆周角定理;3等腰三角形的性质
    6、C
    【解析】
    解:由题意得:,∴,∴x=±1.故选C.
    7、B
    【解析】
    最简二次根式必须满足以下两个条件:1.被开方数的因数是(整数),因式是( 整式 )(分母中不含根号)2.被开方数中不含能开提尽方的( 因数 )或( 因式 ).
    【详解】
    A. =3, 不是最简二次根式;
    B. ,最简二次根式;
    C. =,不是最简二次根式;
    D. =,不是最简二次根式.
    故选:B
    【点睛】
    本题考核知识点:最简二次根式.解题关键点:理解最简二次根式条件.
    8、B
    【解析】
    ∵(±9)2=81,
    ∴±±9.
    故选B.
    9、B
    【解析】
    根据二次根式有意义的条件即可求出的范围.
    【详解】
    由题意可知: ,
    解得:,
    故选:.
    【点睛】
    考查二次根式的意义,解题的关键是熟练运用二次根式有意义的条件.
    10、D
    【解析】
    根据ED是BC的垂直平分线、BD是角平分线以及∠A=90°可求得∠C=∠DBC=∠ABD=30°,从而可得CD=BD=2AD=6,然后利用三角函数的知识进行解答即可得.
    【详解】
    ∵ED是BC的垂直平分线,
    ∴DB=DC,
    ∴∠C=∠DBC,
    ∵BD是△ABC的角平分线,
    ∴∠ABD=∠DBC,
    ∵∠A=90°,∴∠C+∠ABD+∠DBC=90°,
    ∴∠C=∠DBC=∠ABD=30°,
    ∴BD=2AD=6,
    ∴CD=6,
    ∴CE =3,
    故选D.
    【点睛】
    本题考查了线段垂直平分线的性质,三角形内角和定理,含30度角的直角三角形的性质,余弦等,结合图形熟练应用相关的性质及定理是解题的关键.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、﹣a
    【解析】
    , .
    .
    12、4n+1
    【解析】
    分析可知规律是每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个.
    【详解】
    解:第一个图案正三角形个数为6=1+4;
    第二个图案正三角形个数为1+4+4=1+1×4;
    第三个图案正三角形个数为1+1×4+4=1+3×4;
    …;
    第n个图案正三角形个数为1+(n﹣1)×4+4=1+4n=4n+1.
    故答案为4n+1.
    考点:规律型:图形的变化类.
    13、三.
    【解析】
    先根据一次函数判断出函数图象经过的象限,进而可得出结论.
    【详解】
    解:∵一次函数中,
    此函数的图象经过一、二、四象限,不经过第三象限,
    故答案为:三.
    【点睛】
    本题考查的是一次函数的性质,即一次函数中,当,时,函数图象经过一、二、四象限.
    14、
    【解析】
    先由根与系数的关系得:两根和与两根积,再将m2+n2进行变形,化成和或积的形式,代入即可.
    【详解】
    由根与系数的关系得:m+n=,mn=,
    ∴m2+n2=(m+n)2-2mn=()2-2×=,
    故答案为:.
    【点睛】
    本题考查了利用根与系数的关系求代数式的值,先将一元二次方程化为一般形式,写出两根的和与积的值,再将所求式子进行变形;如、x12+x22等等,本题是常考题型,利用完全平方公式进行转化.
    15、A, 18, 1
    【解析】
    A、首先确定小明所搭几何体所需的正方体的个数,然后确定两人共搭建几何体所需小立方体的数量,求差即可;
    B、分别得到前后面,上下面,左右面的面积,相加即可求解.
    【详解】
    A、∵小亮所搭几何体恰好可以和小明所搭几何体拼成一个无缝隙的大长方体,
    ∴该长方体需要小立方体4×32=36个,
    ∵小明用18个边长为1的小正方体搭成了一个几何体,
    ∴小亮至少还需36-18=18个小立方体,
    B、表面积为:2×(8+8+7)=1.
    故答案是:A,18,1.
    【点睛】
    考查了由三视图判断几何体的知识,能够确定两人所搭几何体的形状是解答本题的关键.
    16、-1.
    【解析】
    设正方形的对角线OA长为1m,根据正方形的性质则可得出B、C坐标,代入二次函数y=ax1+c中,即可求出a和c,从而求积.
    【详解】
    设正方形的对角线OA长为1m,则B(﹣m,m),C(m,m),A(0,1m);
    把A,C的坐标代入解析式可得:c=1m①,am1+c=m②,
    ①代入②得:am1+1m=m,
    解得:a=-,
    则ac=-1m=-1.
    考点:二次函数综合题.

    三、解答题(共8题,共72分)
    17、见解析
    【解析】
    根据∠ABD=∠DCA,∠ACB=∠DBC,求证∠ABC=∠DCB,然后利用AAS可证明△ABC≌△DCB,即可证明结论.
    【详解】
    证明:∵∠ABD=∠DCA,∠DBC=∠ACB
    ∴∠ABD+∠DBC=∠DCA+∠ACB
    即∠ABC=∠DCB
    在△ABC和△DCB中

    ∴△ABC≌△DCB(ASA)
    ∴AB=DC
    【点睛】
    本题主要考查学生对全等三角形的判定与性质的理解和掌握,证明此题的关键是求证△ABC≌△DCB.难度不大,属于基础题.
    18、(1)详见解析;(2)①67.5°;②90°.
    【解析】
    (1)要证明CD∥AB,只要证明∠ODF=∠AOD即可,根据题目中的条件可以证明∠ODF=∠AOD,从而可以解答本题;
    (2)①根据四边形ADFP是菱形和菱形的性质,可以求得∠DAE的度数;
    ②根据四边形BFDP是正方形,可以求得∠DAE的度数.
    【详解】
    (1)证明:连接OD,如图所示,

    ∵射线DC切⊙O于点D,
    ∴OD⊥CD,
    即∠ODF=90°,
    ∵∠AED=45°,
    ∴∠AOD=2∠AED=90°,
    ∴∠ODF=∠AOD,
    ∴CD∥AB;
    (2)①连接AF与DP交于点G,如图所示,

    ∵四边形ADFP是菱形,∠AED=45°,OA=OD,
    ∴AF⊥DP,∠AOD=90°,∠DAG=∠PAG,
    ∴∠AGE=90°,∠DAO=45°,
    ∴∠EAG=45°,∠DAG=∠PEG=22.5°,
    ∴∠EAD=∠DAG+∠EAG=22.5°+45°=67.5°,
    故答案为:67.5°;
    ②∵四边形BFDP是正方形,
    ∴BF=FD=DP=PB,
    ∠DPB=∠PBF=∠BFD=∠FDP=90°,
    ∴此时点P与点O重合,
    ∴此时DE是直径,
    ∴∠EAD=90°,
    故答案为:90°.
    【点睛】
    本题考查菱形的判定与性质、切线的性质、正方形的判定,解答本题的关键是明确题意,找出所求问题需要的条件,利用菱形的性质和正方形的性质解答.
    19、(1);(2)(0,)或(0,4).
    【解析】
    试题分析:(1)将A点的坐标代入抛物线中,即可得出二次函数的解析式;
    (2)本题要分两种情况进行讨论:①PB=AB,先根据抛物线的解析式求出B点的坐标,即可得出OB的长,进而可求出AB的长,也就知道了PB的长,由此可求出P点的坐标;
    ②PA=AB,此时P与B关于x轴对称,由此可求出P点的坐标.
    试题解析:(1)∵抛物线经过点A(1,0),∴,∴;
    (2)∵抛物线的解析式为,∴令,则,∴B点坐标(0,﹣4),AB=,
    ①当PB=AB时,PB=AB=,∴OP=PB﹣OB=.∴P(0,),
    ②当PA=AB时,P、B关于x轴对称,∴P(0,4),因此P点的坐标为(0,)或(0,4).
    考点:二次函数综合题.
    20、(1)①,;②,,,;(2).
    【解析】
    (1)①根据平行点的定义即可判断;
    ②分两种情形:如图1,当点B在原点上方时,作OH⊥AB于点H,可知OH=1.如图2,当点B在原点下方时,同法可求;
    (2)如图,直线OE的解析式为,设直线BC//OE交x轴于C,作CD⊥OE于D. 设⊙A与直线BC相切于点F,想办法求出点A的坐标,再根据对称性求出左侧点A的坐标即可解决问题;
    【详解】
    解:(1)①因为P2、P3到直线y=x的距离为1,
    所以根据平行点的定义可知,直线m的平行点是,,
    故答案为,.
    ②解:由题意可知,直线m的所有平行点组成平行于直线m,且到直线m的距离为1的直线.
    设该直线与x轴交于点A,与y轴交于点B.
    如图1,当点B在原点上方时,作OH⊥AB于点H,可知OH=1.

    由直线m的表达式为y=x,可知∠OAB=∠OBA=45°.
    所以.
    直线AB与⊙O的交点即为满足条件的点Q.
    连接,作轴于点N,可知.
    在中,可求.
    所以.
    在中,可求.
    所以.
    所以点的坐标为.
    同理可求点的坐标为.

    如图2,当点B在原点下方时,可求点的坐标为点的坐标为,
    综上所述,点Q的坐标为,,,.
    (2)如图,直线OE的解析式为,设直线BC∥OE交x轴于C,作CD⊥OE于D.

    当CD=1时,在Rt△COD中,∠COD=60°,
    ∴,
    设⊙A与直线BC相切于点F,
    在Rt△ACE中,同法可得,
    ∴,
    ∴,
    根据对称性可知,当⊙A在y轴左侧时,,
    观察图象可知满足条件的N的值为:.
    【点睛】
    此题考查一次函数综合题、直线与圆的位置关系、锐角三角函数、解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造直角三角形解决问题.
    21、 (1) 每次下调10% (2) 第一种方案更优惠.
    【解析】
    (1)设出平均每次下调的百分率为x,利用预订每平方米销售价格×(1-每次下调的百分率)2=开盘每平方米销售价格列方程解答即可.
    (2)求出打折后的售价,再求出不打折减去送物业管理费的钱,再进行比较,据此解答.
    【详解】
    解:(1)设平均每次下调的百分率为x,根据题意得
    5000×(1-x)2=4050
       解得x=10%或x=1.9(舍去)
    答:平均每次下调10%.
    (2)9.8折=98%,
    100×4050×98%=396900(元)
    100×4050-100×1.5×12×2=401400(元),
    396900<401400,所以第一种方案更优惠.
    答:第一种方案更优惠.
    【点睛】
    本题考查一元二次方程的应用,能找到等量关系式,并根据等量关系式正确列出方程是解决本题的关键.
    22、x=3时,原式=
    【解析】
    原式括号中两项通分并利用同分母分式的减法法则计算,再利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,求出不等式组的解集,找出解集中的整数计算得出到x的值,代入计算即可求出值.
    【详解】
    解:原式=÷

    =,
    解不等式组得,2<x<,
    ∵x取整数,
    ∴x=3,
    当x=3时,原式=.
    【点睛】
    本题主要考查分式额化简求值及一元一次不等式组的整数解.
    23、 (1) 45°.(1) MN1=ND1+DH1.理由见解析;(3)11.
    【解析】
    (1)先根据AG⊥EF得出△ABE和△AGE是直角三角形,再根据HL定理得出△ABE≌△AGE,故可得出∠BAE=∠GAE,同理可得出∠GAF=∠DAF,由此可得出结论;
    (1)由旋转的性质得出∠BAM=∠DAH,再根据SAS定理得出△AMN≌△AHN,故可得出MN=HN.再由∠BAD=90°,AB=AD可知∠ABD=∠ADB=45°,根据勾股定理即可得出结论;(3)设正方形ABCD的边长为x,则CE=x-4,CF=x-2,再根据勾股定理即可得出x的值.
    【详解】
    解:(1)在正方形ABCD中,∠B=∠D=90°,
    ∵AG⊥EF,
    ∴△ABE和△AGE是直角三角形.
    在Rt△ABE和Rt△AGE中,

    ∴△ABE≌△AGE(HL),
    ∴∠BAE=∠GAE.
    同理,∠GAF=∠DAF.
    ∴∠EAF=∠EAG+∠FAG=∠BAD=45°.
    (1)MN1=ND1+DH1.
    由旋转可知:∠BAM=∠DAH,
    ∵∠BAM+∠DAN=45°,
    ∴∠HAN=∠DAH+∠DAN=45°.
    ∴∠HAN=∠MAN.
    在△AMN与△AHN中,

    ∴△AMN≌△AHN(SAS),
    ∴MN=HN.
    ∵∠BAD=90°,AB=AD,
    ∴∠ABD=∠ADB=45°.
    ∴∠HDN=∠HDA+∠ADB=90°.
    ∴NH1=ND1+DH1.
    ∴MN1=ND1+DH1.
    (3)由(1)知,BE=EG=4,DF=FG=2.
    设正方形ABCD的边长为x,则CE=x-4,CF=x-2.
    ∵CE1+CF1=EF1,
    ∴(x-4)1+(x-2)1=101.
    解这个方程,得x1=11,x1=-1(不合题意,舍去).
    ∴正方形ABCD的边长为11.
    【点睛】
    本题考查的是几何变换综合题,涉及到三角形全等的判定与性质、勾股定理、正方形的性质等知识,难度适中.
    24、(1)80,20,72;(2)16,补图见解析;(3)原来开私家车的人中至少有50人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数.
    【解析】
    试题分析:(1)用乘公交车的人数除以所占的百分比,计算即可求出总人数,再用总人数乘以开私家车的所占的百分比求出m,用360°乘以骑自行车的所占的百分比计算即可得解:
    样本中的总人数为:36÷45%=80人;
    开私家车的人数m=80×25%=20;
    扇形统计图中“骑自行车”的圆心角为.
    (2)求出骑自行车的人数,然后补全统计图即可.
    (3)设原来开私家车的人中有x人改为骑自行车,表示出改后骑自行车的人数和开私家车的人数,列式不等式,求解即可.
    试题解析:解:(1)80,20,72.
    (2)骑自行车的人数为:80×20%=16人,
    补全统计图如图所示;

    (3)设原来开私家车的人中有x人改为骑自行车,
    由题意得,,解得x≥50.
    答:原来开私家车的人中至少有50人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数.
    考点:1.条形统计图;2.扇形统计图;3.频数、频率和总量的关系;4.一元一次不等式的应用.

    相关试卷

    2023年宁夏石嘴山市平罗县中考数学二模试卷(含解析):

    这是一份2023年宁夏石嘴山市平罗县中考数学二模试卷(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年宁夏石嘴山市平罗县中考数学一模试卷(含解析):

    这是一份2023年宁夏石嘴山市平罗县中考数学一模试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2022届宁夏石嘴山市平罗县重点达标名校毕业升学考试模拟卷数学卷含解析:

    这是一份2022届宁夏石嘴山市平罗县重点达标名校毕业升学考试模拟卷数学卷含解析,共17页。试卷主要包含了考生要认真填写考场号和座位序号,函数等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map