终身会员
搜索
    上传资料 赚现金
    青岛市重点达标名校2021-2022学年中考数学仿真试卷含解析
    立即下载
    加入资料篮
    青岛市重点达标名校2021-2022学年中考数学仿真试卷含解析01
    青岛市重点达标名校2021-2022学年中考数学仿真试卷含解析02
    青岛市重点达标名校2021-2022学年中考数学仿真试卷含解析03
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    青岛市重点达标名校2021-2022学年中考数学仿真试卷含解析

    展开
    这是一份青岛市重点达标名校2021-2022学年中考数学仿真试卷含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,有一组数据,下列命题中真命题是,点M等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生请注意:
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图,等腰△ABC的底边BC与底边上的高AD相等,高AD在数轴上,其中点A,D分别对应数轴上的实数﹣2,2,则AC的长度为(  )

    A.2 B.4 C.2 D.4
    2.等腰中,,D是AC的中点,于E,交BA的延长线于F,若,则的面积为( )

    A.40 B.46 C.48 D.50
    3.下列各数中,最小的数是
    A. B. C.0 D.
    4.有一组数据:3,4,5,6,6,则这组数据的平均数、众数、中位数分别是( )
    A.4.8,6,6 B.5,5,5 C.4.8,6,5 D.5,6,6
    5.下列命题中真命题是( )
    A.若a2=b2,则a=b B.4的平方根是±2
    C.两个锐角之和一定是钝角 D.相等的两个角是对顶角
    6.某市今年1月份某一天的最高气温是3℃,最低气温是—4℃,那么这一天的最高气温比最低气温高
    A.—7℃ B.7℃ C.—1℃ D.1℃
    7.如图,在△ABC中,EF∥BC,AB=3AE,若S四边形BCFE=16,则S△ABC=(  )

    A.16 B.18 C.20 D.24
    8.点M(1,2)关于y轴对称点的坐标为(  )
    A.(﹣1,2) B.(﹣1,﹣2) C.(1,﹣2) D.(2,﹣1)
    9.如图,△ABC的面积为8cm2 , AP垂直∠B的平分线BP于P,则△PBC的面积为(   )

    A.2cm2   B.3cm2   C.4cm2   D.5cm2
    10.如图,将△ABC沿着DE剪成一个小三角形ADE和一个四边形D'E'CB,若DE∥BC,四边形D'E'CB各边的长度如图所示,则剪出的小三角形ADE应是(  )

    A. B. C. D.
    11.已知二次函数(为常数),当时,函数的最小值为5,则的值为(  )
    A.-1或5 B.-1或3 C.1或5 D.1或3
    12.关于二次函数,下列说法正确的是( )
    A.图像与轴的交点坐标为 B.图像的对称轴在轴的右侧
    C.当时,的值随值的增大而减小 D.的最小值为-3
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,AC是以AB为直径的⊙O的弦,点D是⊙O上的一点,过点D作⊙O的切线交直线AC于点E,AD平分∠BAE,若AB=10,DE=3,则AE的长为_____.

    14.分式方程+=1的解为________.
    15.关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不相等的实根,则实数k的取值范围是_____.
    16.如图,在矩形ABCD中,点E是边CD的中点,将△ADE沿AE折叠后得到△AFE,且点F在矩形ABCD内部.将AF延长交边BC于点G.若,则     (用含k的代数式表示).

    17.如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是_______.

    18.已知a+=2,求a2+=_____.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,△BAD是由△BEC在平面内绕点B旋转60°而得,且AB⊥BC,BE=CE,连接DE.求证:△BDE≌△BCE;试判断四边形ABED的形状,并说明理由.

    20.(6分)如图,在平行四边形ABCD中,AB<BC.利用尺规作图,在AD边上确定点E,使点E到边AB,BC的距离相等(不写作法,保留作图痕迹);若BC=8,CD=5,则CE= .

    21.(6分)某经销商经销的冰箱二月份的售价比一月份每台降价500元,已知卖出相同数量的冰箱一月份的销售额为9万元,二月份的销售额只有8万元.
    (1)二月份冰箱每台售价为多少元?
    (2)为了提高利润,该经销商计划三月份再购进洗衣机进行销售,已知洗衣机每台进价为4000元,冰箱每台进价为3500元,预计用不多于7.6万元的资金购进这两种家电共20台,设冰箱为y台(y≤12),请问有几种进货方案?
    (3)三月份为了促销,该经销商决定在二月份售价的基础上,每售出一台冰箱再返还顾客现金a元,而洗衣机按每台4400元销售,这种情况下,若(2)中各方案获得的利润相同,则a应取何值?
    22.(8分)如图,轮船从点A处出发,先航行至位于点A的南偏西15°且点A相距100km的点B处,再航行至位于点A的南偏东75°且与点B相距200km的点C处.
    (1)求点C与点A的距离(精确到1km);
    (2)确定点C相对于点A的方向.
    (参考数据:)

    23.(8分)先化简,然后从﹣<x<的范围内选取一个合适的整数作为x的值代入求值.
    24.(10分)主题班会上,王老师出示了如图所示的一幅漫画,经过同学们的一番热议,达成以下四个观点:
    A.放下自我,彼此尊重; B.放下利益,彼此平衡;
    C.放下性格,彼此成就; D.合理竞争,合作双赢.
    要求每人选取其中一个观点写出自己的感悟.根据同学们的选择情况,小明绘制了下面两幅不完整的图表,请根据图表中提供的信息,解答下列问题:
     观点
    频数 
    频率 
     A
     a
     0.2
     B
     12
     0.24
     C
     8
     b
     D
     20
     0.4
    (1)参加本次讨论的学生共有   人;表中a=   ,b=   ;
    (2)在扇形统计图中,求D所在扇形的圆心角的度数;
    (3)现准备从A,B,C,D四个观点中任选两个作为演讲主题,请用列表或画树状图的方法求选中观点D(合理竞争,合作双赢)的概率.

    25.(10分)随着互联网的发展,同学们的学习习惯也有了改变,一些同学在做题遇到困难时,喜欢上网查找答案.针对这个问题,某校调查了部分学生对这种做法的意见(分为:赞成、无所谓、反对),并将调查结果绘制成图1和图2两个不完整的统计图.

    请根据图中提供的信息,解答下列问题:此次抽样调查中,共调查了多少名学生?将图1补充完整;求出扇形统计图中持“反对”意见的学生所在扇形的圆心角的度数;根据抽样调查结果,请你估计该校1500名学生中有多少名学生持“无所谓”意见.
    26.(12分)如图所示,在平面直角坐标系xOy中,正方形OABC的边长为2cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B和D(4,).

    (1)求抛物线的表达式.
    (2)如果点P由点A出发沿AB边以2cm/s的速度向点B运动,同时点Q由点B出发,沿BC边以1cm/s的速度向点C运动,当其中一点到达终点时,另一点也随之停止运动.设S=PQ2(cm2).
    ①试求出S与运动时间t之间的函数关系式,并写出t的取值范围;
    ②当S取时,在抛物线上是否存在点R,使得以点P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由.
    (3)在抛物线的对称轴上求点M,使得M到D、A的距离之差最大,求出点M的坐标.
    27.(12分)今年3月12日植树节期间,学校预购进A,B两种树苗.若购进A种树苗3棵,B种树苗5棵,需2100元;若购进A种树苗4棵,B种树苗10棵,需3800元.求购进A,B两种树苗的单价;若该学校准备用不多于8000元的钱购进这两种树苗共30棵,求A种树苗至少需购进多少棵.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    根据等腰三角形的性质和勾股定理解答即可.
    【详解】
    解:∵点A,D分别对应数轴上的实数﹣2,2,
    ∴AD=4,
    ∵等腰△ABC的底边BC与底边上的高AD相等,
    ∴BC=4,
    ∴CD=2,
    在Rt△ACD中,AC=,
    故选:C.
    【点睛】
    此题考查等腰三角形的性质,注意等腰三角形的三线合一,熟练运用勾股定理.
    2、C
    【解析】
    ∵CE⊥BD,∴∠BEF=90°,∵∠BAC=90°,∴∠CAF=90°,
    ∴∠FAC=∠BAD=90°,∠ABD+∠F=90°,∠ACF+∠F=90°,
    ∴∠ABD=∠ACF,
    又∵AB=AC,∴△ABD≌△ACF,∴AD=AF,
    ∵AB=AC,D为AC中点,∴AB=AC=2AD=2AF,
    ∵BF=AB+AF=12,∴3AF=12,∴AF=4,
    ∴AB=AC=2AF=8,
    ∴S△FBC= ×BF×AC=×12×8=48,故选C.
    3、A
    【解析】
    应明确在数轴上,从左到右的顺序,就是数从小到大的顺序,据此解答.
    【详解】
    解:因为在数轴上-3在其他数的左边,所以-3最小;
    故选A.
    【点睛】
    此题考负数的大小比较,应理解数字大的负数反而小.
    4、C
    【解析】
    解:在这一组数据中6是出现次数最多的,故众数是6;
    而将这组数据从小到大的顺序排列3,4,5,6,6,处于中间位置的数是5,
    平均数是:(3+4+5+6+6)÷5=4.8,
    故选C.
    【点睛】
    本题考查众数;算术平均数;中位数.
    5、B
    【解析】
    利用对顶角的性质、平方根的性质、锐角和钝角的定义分别判断后即可确定正确的选项.
    【详解】
    A、若a2=b2,则a=±b,错误,是假命题;
    B、4的平方根是±2,正确,是真命题;
    C、两个锐角的和不一定是钝角,故错误,是假命题;
    D、相等的两个角不一定是对顶角,故错误,是假命题.
    故选B.
    【点睛】
    考查了命题与定理的知识,解题的关键是了解对顶角的性质、平方根的性质、锐角和钝角的定义,难度不大.
    6、B
    【解析】
    求最高气温比最低气温高多少度,即是求最高气温与最低气温的差,这个实际问题可转化为减法运算,列算式计算即可.
    【详解】
    3-(-4)=3+4=7℃.
    故选B.
    7、B
    【解析】
    【分析】由EF∥BC,可证明△AEF∽△ABC,利用相似三角形的性质即可求出S△ABC的值.
    【详解】∵EF∥BC,
    ∴△AEF∽△ABC,
    ∵AB=3AE,
    ∴AE:AB=1:3,
    ∴S△AEF:S△ABC=1:9,
    设S△AEF=x,
    ∵S四边形BCFE=16,
    ∴,
    解得:x=2,
    ∴S△ABC=18,
    故选B.
    【点睛】本题考查了相似三角形的判定与性质,熟练掌握相似三角形的面积比等于相似比的平方是解本题的关键.
    8、A
    【解析】
    关于y轴对称的点的坐标特征是纵坐标不变,横坐标变为相反数.
    【详解】
    点M(1,2)关于y轴对称点的坐标为(-1,2)
    【点睛】
    本题考查关于坐标轴对称的点的坐标特征,牢记关于坐标轴对称的点的性质是解题的关键.
    9、C
    【解析】
    延长AP交BC于E,根据AP垂直∠B的平分线BP于P,即可求出△ABP≌△BEP,又知△APC和△CPE等底同高,可以证明两三角形面积相等,即可求得△PBC的面积.
    【详解】
    延长AP交BC于E.
    ∵AP垂直∠B的平分线BP于P,∴∠ABP=∠EBP,∠APB=∠BPE=90°.
    在△APB和△EPB中,∵,∴△APB≌△EPB(ASA),∴S△APB=S△EPB,AP=PE,∴△APC和△CPE等底同高,∴S△APC=S△PCE,∴S△PBC=S△PBE+S△PCES△ABC=4cm1.
    故选C.

    【点睛】
    本题考查了三角形面积和全等三角形的性质和判定的应用,关键是求出S△PBC=S△PBE+S△PCES△ABC.
    10、C
    【解析】
    利用相似三角形的性质即可判断.
    【详解】
    设AD=x,AE=y,
    ∵DE∥BC,
    ∴△ADE∽△ABC,
    ∴,
    ∴,
    ∴x=9,y=12,
    故选:C.
    【点睛】
    考查平行线的性质,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
    11、A
    【解析】
    由解析式可知该函数在x=h时取得最小值1,x>h时,y随x的增大而增大;当x3,可得当x=3时,y取得最小值5,分别列出关于h的方程求解即可.
    【详解】
    解:∵x>h时,y随x的增大而增大,当x ∴①若h<1,当时,y随x的增大而增大,
    ∴当x=1时,y取得最小值5,
    可得:,
    解得:h=−1或h=3(舍),
    ∴h=−1;
    ②若h>3,当时,y随x的增大而减小,
    当x=3时,y取得最小值5,
    可得:,
    解得:h=5或h=1(舍),
    ∴h=5,
    ③若1≤h≤3时,当x=h时,y取得最小值为1,不是5,
    ∴此种情况不符合题意,舍去.
    综上所述,h的值为−1或5,
    故选:A.
    【点睛】
    本题主要考查二次函数的性质和最值,根据二次函数的性质和最值进行分类讨论是解题的关键.
    12、D
    【解析】
    分析:根据题目中的函数解析式可以判断各个选项中的结论是否成立,从而可以解答本题.
    详解:∵y=2x2+4x-1=2(x+1)2-3,
    ∴当x=0时,y=-1,故选项A错误,
    该函数的对称轴是直线x=-1,故选项B错误,
    当x<-1时,y随x的增大而减小,故选项C错误,
    当x=-1时,y取得最小值,此时y=-3,故选项D正确,
    故选D.
    点睛:本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、1或9
    【解析】
    (1)点E在AC的延长线上时,过点O作OFAC交AC于点F,如图所示

    ∵OD=OA,
    ∴∠OAD=∠ODA,
    ∵AD平分∠BAE,
    ∴∠OAD=∠ODA=∠DAC,
    ∴OD//AE,
    ∵DE是圆的切线,
    ∴DE⊥OD,
    ∴∠ODE=∠E=90o,
    ∴四边形ODEF是矩形,
    ∴OF=DE,EF=OD=5,
    又∵OF⊥AC,
    ∴AF=,
    ∴AE=AF+EF=5+4=9.
    (2)当点E在CA的线上时,过点O作OFAC交AC于点F,如图所示

    同(1)可得:EF=OD=5,OF=DE=3,
    在直角三角形AOF中,AF=,
    ∴AE=EF-AF=5-4=1.
    14、
    【解析】
    根据解分式方程的步骤,即可解答.
    【详解】
    方程两边都乘以,得:,
    解得:,
    检验:当时,,
    所以分式方程的解为,
    故答案为.
    【点睛】
    考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解解分式方程一定注意要验根.
    15、k>
    【解析】
    由方程根的情况,根据根的判别式可得到关于k的不等式,则可求得k的取值范围.
    【详解】
    ∵关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不相等的实根,
    ∴△>0,即(2k+1)2-4(k2+1)>0,
    解得k>,
    故答案为k>.
    【点睛】
    本题主要考查根的判别式,熟练掌握一元二次方程根的个数与根的判别式的关系是解题的关键.
    16、。
    【解析】
    试题分析:如图,连接EG,

    ∵,∴设,则。
    ∵点E是边CD的中点,∴。
    ∵△ADE沿AE折叠后得到△AFE,
    ∴。
    易证△EFG≌△ECG(HL),∴。∴。
    ∴在Rt△ABG中,由勾股定理得: ,即。
    ∴。
    ∴(只取正值)。
    ∴。
    17、
    【解析】
    试题解析:∵两个同心圆被等分成八等份,飞镖落在每一个区域的机会是均等的,其中白色区域的面积占了其中的四等份,
    ∴P(飞镖落在白色区域)=.
    18、1
    【解析】
    试题分析:∵==4,∴=4-1=1.故答案为1.
    考点:完全平方公式.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、证明见解析.
    【解析】
    (1)根据旋转的性质可得DB=CB,∠ABD=∠EBC,∠ABE=60°,然后根据垂直可得出∠DBE=∠CBE=30°,继而可根据SAS证明△BDE≌△BCE;
    (2)根据(1)以及旋转的性质可得,△BDE≌△BCE≌△BDA,继而得出四条棱相等,证得四边形ABED为菱形.
    【详解】
    (1)证明:∵△BAD是由△BEC在平面内绕点B旋转60°而得,
    ∴DB=CB,∠ABD=∠EBC,∠ABE=60°,
    ∵AB⊥EC,
    ∴∠ABC=90°,
    ∴∠DBE=∠CBE=30°,
    在△BDE和△BCE中,
    ∵,
    ∴△BDE≌△BCE;
    (2)四边形ABED为菱形;
    由(1)得△BDE≌△BCE,
    ∵△BAD是由△BEC旋转而得,
    ∴△BAD≌△BEC,
    ∴BA=BE,AD=EC=ED,
    又∵BE=CE,
    ∴BA=BE=ED= AD
    ∴四边形ABED为菱形.
    考点:旋转的性质;全等三角形的判定与性质;菱形的判定.
    20、(1)见解析;(2)1.
    【解析】
    试题分析:根据角平分线上的点到角的两边距离相等知作出∠A的平分线即可;根据平行四边形的性质可知AB=CD=5,AD∥BC,再根据角平分线的性质和平行线的性质得到∠BAE=∠BEA,再根据等腰三角形的性质和线段的和差关系即可求解.
    试题解析:(1)如图所示:E点即为所求.

    (2)∵四边形ABCD是平行四边形,∴AB=CD=5,AD∥BC,∴∠DAE=∠AEB,∵AE是∠A的平分线,
    ∴∠DAE=∠BAE,∴∠BAE=∠BEA,∴BE=BA=5,∴CE=BC﹣BE=1.
    考点:作图—复杂作图;平行四边形的性质
    21、(1)二月份冰箱每台售价为4000元;(2)有五种购货方案;(3)a的值为1.
    【解析】
    (1)设二月份冰箱每台售价为x元,则一月份冰箱每台售价为(x+500)元,根据数量=总价÷单价结合卖出相同数量的冰箱一月份的销售额为9万元而二月份的销售额只有3万元,即可得出关于x的分式方程,解之经检验后即可得出结论;
    (2)根据总价=单价×数量结合预计用不多于7.6万元的资金购进这两种家电共20台,即可得出关于y的一元一次不等式,解之即可得出y的取值范围,结合y≤2及y为正整数,即可得出各进货方案;
    (3)设总获利为w,购进冰箱为m台,洗衣机为(20﹣m)台,根据总利润=单台利润×购进数量,即可得出w关于m的函数关系式,由w为定值即可求出a的值.
    【详解】
    (1)设二月份冰箱每台售价为x元,则一月份冰箱每台售价为(x+500)元,
    根据题意,得: =,
    解得:x=4000,
    经检验,x=4000是原方程的根.
    答:二月份冰箱每台售价为4000元.
    (2)根据题意,得:3500y+4000(20﹣y)≤76000,
    解得:y≥3,
    ∵y≤2且y为整数,
    ∴y=3,9,10,11,2.
    ∴洗衣机的台数为:2,11,10,9,3.
    ∴有五种购货方案.
    (3)设总获利为w,购进冰箱为m台,洗衣机为(20﹣m)台,
    根据题意,得:w=(4000﹣3500﹣a)m+(4400﹣4000)(20﹣m)=(1﹣a)m+3000,
    ∵(2)中的各方案利润相同,
    ∴1﹣a=0,
    ∴a=1.
    答:a的值为1.
    【点睛】
    本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式;(3)利用总利润=单台利润×购进数量,找出w关于m的函数关系式.
    22、(1)173;(2)点C位于点A的南偏东75°方向.
    【解析】
    试题分析:(1)作辅助线,过点A作AD⊥BC于点D,构造直角三角形,解直角三角形即可.
    (2)利用勾股定理的逆定理,判定△ABC为直角三角形;然后根据方向角的定义,即可确定点C相对于点A的方向.
    试题解析:解:(1)如答图,过点A作AD⊥BC于点D.
    由图得,∠ABC=75°﹣10°=60°.
    在Rt△ABD中,∵∠ABC=60°,AB=100,
    ∴BD=50,AD=50.
    ∴CD=BC﹣BD=200﹣50=1.
    在Rt△ACD中,由勾股定理得:
    AC=(km).
    答:点C与点A的距离约为173km.
    (2)在△ABC中,∵AB2+AC2=1002+(100)2=40000,BC2=2002=40000,
    ∴AB2+AC2=BC2. ∴∠BAC=90°.
    ∴∠CAF=∠BAC﹣∠BAF=90°﹣15°=75°.
    答:点C位于点A的南偏东75°方向.

    考点:1.解直角三角形的应用(方向角问题);2. 锐角三角函数定义;3.特殊角的三角函数值;4. 勾股定理和逆定理.
    23、
    【解析】
    根据分式的减法和除法可以化简题目中的式子,然后从﹣<x<的范围内选取一个使得原分式有意义的整数作为x的值代入即可解答本题.
    【详解】
    解:÷(﹣x+1)
    =
    =
    =
    =,
    当x=﹣2时,原式= .
    【点睛】
    本题考查分式的化简求值、估算无理数的大小,解答本题的关键是明确分式化简求值的方法.
    24、(1)50、10、0.16;(2)144°;(3).
    【解析】
    (1)由B观点的人数和所占的频率即可求出总人数;由总人数即可求出a、b的值,
    (2)用360°乘以D观点的频率即可得;
    (3)画出树状图,然后根据概率公式列式计算即可得解
    【详解】
    解:(1)参加本次讨论的学生共有12÷0.24=50,
    则a=50×0.2=10,b=8÷50=0.16,
    故答案为50、10、0.16;
    (2)D所在扇形的圆心角的度数为360°×0.4=144°;
    (3)根据题意画出树状图如下:

    由树形图可知:共有12中可能情况,选中观点D(合理竞争,合作双赢)的概率有6种,
    所以选中观点D(合理竞争,合作双赢)的概率为.
    【点睛】
    此题考查了列表法或树状图法求概率以及条形统计图.用到的知识点为:概率=所求情况数与总情况数之比.
    25、200名;见解析;;(4)375.
    【解析】
    根据统计图中的数据可以求得此次抽样调查中,共调查了多少名学生;
    根据中的结果和统计图中的数据可以求得反对的人数,从而可以将条形统计图补充完整;
    根据统计图中的数据可以求得扇形统计图中持“反对”意见的学生所在扇形的圆心角的度数;
    根据统计图中的数据可以估计该校1500名学生中有多少名学生持“无所谓”意见.
    【详解】
    解:,
    答:此次抽样调查中,共调查了200名学生;
    反对的人数为:,
    补全的条形统计图如右图所示;
    扇形统计图中持“反对”意见的学生所在扇形的圆心角的度数是:;
    (4),
    答:该校1500名学生中有375名学生持“无所谓”意见.
    【点睛】
    本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
    26、(1)抛物线的解析式为:;
    (2)①S与运动时间t之间的函数关系式是S=5t2﹣8t+4,t的取值范围是0≤t≤1;
    ②存在.R点的坐标是(3,﹣);
    (3)M的坐标为(1,﹣).
    【解析】
    试题分析:(1)设抛物线的解析式是y=ax2+bx+c,求出A、B、D的坐标代入即可;
    (2)①由勾股定理即可求出;②假设存在点R,可构成以P、B、R、Q为顶点的平行四边形,求出P、Q的坐标,再分为两种种情况:A、B、C即可根据平行四边形的性质求出R的坐标;
    (3)A关于抛物线的对称轴的对称点为B,过B、D的直线与抛物线的对称轴的交点为所求M,求出直线BD的解析式,把抛物线的对称轴x=1代入即可求出M的坐标.
    试题解析:(1)设抛物线的解析式是y=ax2+bx+c,
    ∵正方形的边长2,
    ∴B的坐标(2,﹣2)A点的坐标是(0,﹣2),
    把A(0,﹣2),B(2,﹣2),D(4,﹣)代入得:,
    解得a=,b=﹣,c=﹣2,
    ∴抛物线的解析式为:,
    答:抛物线的解析式为:;
    (2)①由图象知:PB=2﹣2t,BQ=t,
    ∴S=PQ2=PB2+BQ2,
    =(2﹣2t)2+t2,
    即S=5t2﹣8t+4(0≤t≤1).
    答:S与运动时间t之间的函数关系式是S=5t2﹣8t+4,t的取值范围是0≤t≤1;
    ②假设存在点R,可构成以P、B、R、Q为顶点的平行四边形.
    ∵S=5t2﹣8t+4(0≤t≤1),
    ∴当S=时,5t2﹣8t+4=,得20t2﹣32t+11=0,
    解得t=,t=(不合题意,舍去),
    此时点P的坐标为(1,﹣2),Q点的坐标为(2,﹣),
    若R点存在,分情况讨论:
    (i)假设R在BQ的右边,如图所示,这时QR=PB,RQ∥PB,
    则R的横坐标为3,R的纵坐标为﹣,
    即R(3,﹣),
    代入,左右两边相等,
    ∴这时存在R(3,﹣)满足题意;

    (ii)假设R在QB的左边时,这时PR=QB,PR∥QB,
    则R(1,﹣)代入,,
    左右不相等,∴R不在抛物线上.(1分)
    综上所述,存点一点R(3,﹣)满足题意.
    答:存在,R点的坐标是(3,﹣);
    (3)如图,M′B=M′A,

    ∵A关于抛物线的对称轴的对称点为B,过B、D的直线与抛物线的对称轴的交点为所求M,
    理由是:∵MA=MB,若M不为L与DB的交点,则三点B、M、D构成三角形,
    ∴|MB|﹣|MD|<|DB|,
    即M到D、A的距离之差为|DB|时,差值最大,
    设直线BD的解析式是y=kx+b,把B、D的坐标代入得:,
    解得:k=,b=﹣,
    ∴y=x﹣,
    抛物线的对称轴是x=1,
    把x=1代入得:y=﹣
    ∴M的坐标为(1,﹣);
    答:M的坐标为(1,﹣).
    考点:二次函数综合题.
    27、(1)A种树苗的单价为200元,B种树苗的单价为300元;(2)10棵
    【解析】
    试题分析:(1)设B种树苗的单价为x元,则A种树苗的单价为y元.则由等量关系列出方程组解答即可;
    (2)设购买A种树苗a棵,则B种树苗为(30﹣a)棵,然后根据总费用和两种树苗的棵数关系列出不等式解答即可.
    试题解析:(1)设B种树苗的单价为x元,则A种树苗的单价为y元,
    可得:,
    解得:,
    答:A种树苗的单价为200元,B种树苗的单价为300元.
    (2)设购买A种树苗a棵,则B种树苗为(30﹣a)棵,
    可得:200a+300(30﹣a)≤8000,
    解得:a≥10,
    答:A种树苗至少需购进10棵.
    考点:1.一元一次不等式的应用;2.二元一次方程组的应用

    相关试卷

    山西省朔州市怀仁市重点达标名校2021-2022学年中考数学仿真试卷含解析: 这是一份山西省朔州市怀仁市重点达标名校2021-2022学年中考数学仿真试卷含解析,共19页。试卷主要包含了答题时请按要求用笔,平面直角坐标系中的点P,当函数y=,如图,内接于,若,则等内容,欢迎下载使用。

    湖南省常德市澧县重点达标名校2021-2022学年中考数学仿真试卷含解析: 这是一份湖南省常德市澧县重点达标名校2021-2022学年中考数学仿真试卷含解析,共20页。试卷主要包含了答题时请按要求用笔,计算的结果是,运用乘法公式计算等内容,欢迎下载使用。

    河南省临颍县重点达标名校2021-2022学年中考数学仿真试卷含解析: 这是一份河南省临颍县重点达标名校2021-2022学年中考数学仿真试卷含解析,共17页。试卷主要包含了下列运算中正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map