青海省玉树市2021-2022学年中考数学考前最后一卷含解析
展开2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.将一圆形纸片对折后再对折,得到下图,然后沿着图中的虚线剪开,得到两部分,其中一部分展开后的平面图形是( )
A. B. C. D.
2.如图,为的直径,为上两点,若,则的大小为( ).
A.60° B.50° C.40° D.20°
3.如图,、是的切线,点在上运动,且不与,重合,是直径.,当时,的度数是( )
A. B. C. D.
4.已知抛物线y=x2+bx+c的对称轴为x=2,若关于x的一元二次方程﹣x2﹣bx﹣c=0在﹣1<x<3的范围内有两个相等的实数根,则c的取值范围是( )
A.c=4 B.﹣5<c≤4 C.﹣5<c<3或c=4 D.﹣5<c≤3或c=4
5.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠CDE的大小是( )
A.40° B.43° C.46° D.54°
6.一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是
A.平均数 B.中位数 C.众数 D.方差
7.若a与﹣3互为倒数,则a=( )
A.3 B.﹣3 C. D.-
8.某一超市在“五•一”期间开展有奖促销活动,每买100元商品可参加抽奖一次,中奖的概率为.小张这期间在该超市买商品获得了三次抽奖机会,则小张( )
A.能中奖一次 B.能中奖两次
C.至少能中奖一次 D.中奖次数不能确定
9.如图,已知AB∥CD,∠1=115°,∠2=65°,则∠C等于( )
A.40° B.45° C.50° D.60°
10.菱形的两条对角线长分别是6cm和8cm,则它的面积是( )
A.6cm2 B.12cm2 C.24cm2 D.48cm2
二、填空题(共7小题,每小题3分,满分21分)
11.如图,点A,B在反比例函数(k>0)的图象上,AC⊥x轴,BD⊥x轴,垂足C,D分别在x轴的正、负半轴上,CD=k,已知AB=2AC,E是AB的中点,且△BCE的面积是△ADE的面积的2倍,则k的值是______.
12.已知函数是关于的二次函数,则__________.
13.如图,数轴上点A表示的数为a,化简:a_____.
14.已知x1,x2是方程x2-3x-1=0的两根,则=______.
15.如图,在□ABCD中,用直尺和圆规作∠BAD的平分线AG,若AD=5,DE=6,则AG的长是________.
16.的倒数是 _____________.
17.某校为了解学生最喜欢的球类运动情况,随机选取该校部分学生进行调查,要求每名学生只写一类最喜欢的球类运动,以下是根据调查结果绘制的统计图表的一部分
那么,其中最喜欢足球的学生数占被调查总人数的百分比为____________%
三、解答题(共7小题,满分69分)
18.(10分)如图,直线y=2x+6与反比例函数y=(k>0)的图像交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图像于点M,交AB于点N,连接BM.求m的值和反比例函数的表达式;直线y=n沿y轴方向平移,当n为何值时,△BMN的面积最大?
19.(5分)如图,AB是⊙O直径,BC⊥AB于点B,点C是射线BC上任意一点,过点C作CD切⊙O于点D,连接AD.求证:BC=CD;若∠C=60°,BC=3,求AD的长.
20.(8分)已知:如图,在矩形ABCD中,点E,F分别在AB,CD边上,BE=DF,连接CE,AF.求证:AF=CE.
21.(10分)如图,在梯形ABCD中,AD∥BC,对角线 AC、BD交于点 M,点E在边BC上,且∠DAE=∠DCB,联结AE,AE与BD交于点F.
(1)求证:;
(2)连接DE,如果BF=3FM,求证:四边形ABED是平行四边形.
22.(10分)如图,在中,,为边上的中线,于点E.
求证:;若,,求线段的长.
23.(12分)在矩形ABCD中,AD=2AB,E是AD的中点,一块三角板的直角顶点与点E重合,两直角边与AB,BC分别交于点M,N,求证:BM=CN.
24.(14分)如图,有四张背面完全相同的纸牌A,B,C,D,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀.
从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用A,B,C,D表示).
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
严格按照图中的方法亲自动手操作一下,即可很直观地呈现出来.
【详解】
根据题意知,剪去的纸片一定是一个四边形,且对角线互相垂直.
故选C.
【点睛】
本题主要考查学生的动手能力及空间想象能力.对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.
2、B
【解析】
根据题意连接AD,再根据同弧的圆周角相等,即可计算的的大小.
【详解】
解:连接,
∵为的直径,
∴.
∵,
∴,
∴.
故选:B.
【点睛】
本题主要考查圆弧的性质,同弧的圆周角相等,这是考试的重点,应当熟练掌握.
3、B
【解析】
连接OB,由切线的性质可得,由邻补角相等和四边形的内角和可得,再由圆周角定理求得,然后由平行线的性质即可求得.
【详解】
解,连结OB,
∵、是的切线,
∴,,则,
∵四边形APBO的内角和为360°,即,
∴,
又∵,,
∴,
∵,
∴,
∵,
∴,
故选:B.
【点睛】
本题主要考查了切线的性质、圆周角定理、平行线的性质和四边形的内角和,解题的关键是灵活运用有关定理和性质来分析解答.
4、D
【解析】
解:由对称轴x=2可知:b=﹣4,
∴抛物线y=x2﹣4x+c,
令x=﹣1时,y=c+5,
x=3时,y=c﹣3,
关于x的一元二次方程﹣x2﹣bx﹣c=0在﹣1<x<3的范围有实数根,
当△=0时,
即c=4,
此时x=2,满足题意.
当△>0时,
(c+5)(c﹣3)≤0,
∴﹣5≤c≤3,
当c=﹣5时,
此时方程为:﹣x2+4x+5=0,
解得:x=﹣1或x=5不满足题意,
当c=3时,
此时方程为:﹣x2+4x﹣3=0,
解得:x=1或x=3此时满足题意,
故﹣5<c≤3或c=4,
故选D.
点睛:本题主要考查二次函数与一元二次方程的关系.理解二次函数与一元二次方程之间的关系是解题的关键.
5、C
【解析】
根据DE∥AB可求得∠CDE=∠B解答即可.
【详解】
解:∵DE∥AB,
∴∠CDE=∠B=46°,
故选:C.
【点睛】
本题主要考查平行线的性质:两直线平行,同位角相等.快速解题的关键是牢记平行线的性质.
6、D
【解析】
解:A.原来数据的平均数是2,添加数字2后平均数仍为2,故A与要求不符;
B.原来数据的中位数是2,添加数字2后中位数仍为2,故B与要求不符;
C.原来数据的众数是2,添加数字2后众数仍为2,故C与要求不符;
D.原来数据的方差==,
添加数字2后的方差==,
故方差发生了变化.
故选D.
7、D
【解析】
试题分析:根据乘积是1的两个数互为倒数,可得3a=1,
∴a=,
故选C.
考点:倒数.
8、D
【解析】
由于中奖概率为,说明此事件为随机事件,即可能发生,也可能不发生.
【详解】
解:根据随机事件的定义判定,中奖次数不能确定
故选D.
【点睛】
解答此题要明确概率和事件的关系:
,为不可能事件;
为必然事件;
为随机事件.
9、C
【解析】
分析:根据两直线平行,同位角相等可得 再根据三角形内角与外角的性质可得∠C的度数.
详解:∵AB∥CD,
∴
∵
∴
故选C.
点睛:考查平行线的性质和三角形外角的性质,三角形的一个外角等于与它不相邻的两个内角的和.
10、C
【解析】
已知对角线的长度,根据菱形的面积计算公式即可计算菱形的面积.
【详解】
根据对角线的长可以求得菱形的面积,
根据S=ab=×6cm×8cm=14cm1.
故选:C.
【点睛】
考查菱形的面积公式,熟练掌握菱形面积的两种计算方法是解题的关键.
二、填空题(共7小题,每小题3分,满分21分)
11、
【解析】
试题解析:过点B作直线AC的垂线交直线AC于点F,如图所示.
∵△BCE的面积是△ADE的面积的2倍,E是AB的中点,
∴S△ABC=2S△BCE,S△ABD=2S△ADE,
∴S△ABC=2S△ABD,且△ABC和△ABD的高均为BF,
∴AC=2BD,
∴OD=2OC.
∵CD=k,
∴点A的坐标为(,3),点B的坐标为(-,-),
∴AC=3,BD=,
∴AB=2AC=6,AF=AC+BD=,
∴CD=k=.
【点睛】本题考查了反比例函数图象上点的坐标特征、三角形的面积公式以及勾股定理.构造直角三角形利用勾股定理巧妙得出k值是解题的关键.
12、1
【解析】
根据一元二次方程的定义可得:,且,求解即可得出m的值.
【详解】
解:由题意得:,且,
解得:,且,
∴
故答案为:1.
【点睛】
此题主要考查了一元二次方程的定义,关键是掌握“未知数的最高次数是1”且“二次项的系数不等于0”.
13、1.
【解析】
直接利用二次根式的性质以及结合数轴得出a的取值范围进而化简即可.
【详解】
由数轴可得:0<a<1,
则a+=a+=a+(1﹣a)=1.
故答案为1.
【点睛】
本题主要考查了二次根式的性质与化简,正确得出a的取值范围是解题的关键.
14、﹣1.
【解析】
试题解析:∵,是方程的两根,∴、,∴== =﹣1.故答案为﹣1.
15、2
【解析】
试题解析:连接EG,
∵由作图可知AD=AE,AG是∠BAD的平分线,
∴∠1=∠2,
∴AG⊥DE,OD=DE=1.
∵四边形ABCD是平行四边形,
∴CD∥AB,
∴∠2=∠1,
∴∠1=∠1,
∴AD=DG.
∵AG⊥DE,
∴OA=AG.
在Rt△AOD中,OA==4,
∴AG=2AO=2.
故答案为2.
16、
【解析】
先把带分数化成假分数可得:,然后根据倒数的概念可得:的倒数是,故答案为:.
17、1%
【解析】
依据最喜欢羽毛球的学生数以及占被调查总人数的百分比,即可得到被调查总人数,进而得出最喜欢篮球的学生数以及最喜欢足球的学生数占被调查总人数的百分比.
【详解】
∵被调查学生的总数为10÷20%=50人,
∴最喜欢篮球的有50×32%=16人,
则最喜欢足球的学生数占被调查总人数的百分比=×100%=1%,
故答案为:1.
【点睛】
本题主要考查扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.
三、解答题(共7小题,满分69分)
18、(1)m=8,反比例函数的表达式为y=;(2)当n=3时,△BMN的面积最大.
【解析】
(1)求出点A的坐标,利用待定系数法即可解决问题;
(2)构造二次函数,利用二次函数的性质即可解决问题.
【详解】
解:(1)∵直线y=2x+6经过点A(1,m),
∴m=2×1+6=8,
∴A(1,8),
∵反比例函数经过点A(1,8),
∴8=,
∴k=8,
∴反比例函数的解析式为y=.
(2)由题意,点M,N的坐标为M(,n),N(,n),
∵0<n<6,
∴<0,
∴S△BMN=×(||+||)×n=×(﹣+)×n=﹣(n﹣3)2+,
∴n=3时,△BMN的面积最大.
19、 (1)证明见解析;(2).
【解析】
(1)根据切线的判定定理得到BC是⊙O的切线,再利用切线长定理证明即可;
(2)根据含30°的直角三角形的性质、正切的定义计算即可.
【详解】
(1)∵AB是⊙O直径,BC⊥AB,
∴BC是⊙O的切线,
∵CD切⊙O于点D,
∴BC=CD;
(2)连接BD,
∵BC=CD,∠C=60°,
∴△BCD是等边三角形,
∴BD=BC=3,∠CBD=60°,
∴∠ABD=30°,
∵AB是⊙O直径,
∴∠ADB=90°,
∴AD=BD•tan∠ABD=.
【点睛】
本题考查了切线的性质、直角三角形的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.
20、证明见解析.
【解析】
试题分析:根据矩形的性质得出求出根据平行四边形的判定得出四边形是平行四边形,即可得出答案.
试题解析:
∵四边形ABCD是矩形,
∴
∴
∴四边形是平行四边形,
点睛:平行四边形的判定:有一组对边平行且相等的四边形是平行四边形.
21、(1) 证明见解析;(2) 证明见解析.
【解析】
分析:(1)由AD∥BC可得出∠DAE=∠AEB,结合∠DCB=∠DAE可得出∠DCB=∠AEB,进而可得出AE∥DC、△AMF∽△CMD,根据相似三角形的性质可得出=,根据AD∥BC,可得出△AMD∽△CMB,根据相似三角形的性质可得出=,进而可得出=,即MD2=MF•MB;
(2)设FM=a,则BF=3a,BM=4a.由(1)的结论可求出MD的长度,代入DF=DM+MF可得出DF的长度,由AD∥BC,可得出△AFD∽△△EFB,根据相似三角形的性质可得出AF=EF,利用“对角线互相平分的四边形是平行四边形”即可证出四边形ABED是平行四边形.
详解:(1)∵AD∥BC,∴∠DAE=∠AEB.∵∠DCB=∠DAE,∴∠DCB=∠AEB,∴AE∥DC,∴△AMF∽△CMD,∴=.
∵AD∥BC,∴△AMD∽△CMB,∴==,即MD2=MF•MB.
(2)设FM=a,则BF=3a,BM=4a.
由MD2=MF•MB,得:MD2=a•4a,∴MD=2a,∴DF=BF=3a.
∵AD∥BC,∴△AFD∽△△EFB,∴==1,∴AF=EF,∴四边形ABED是平行四边形.
点睛:本题考查了相似三角形的判定与性质、平行四边形的判定、平行线的性质以及矩形,解题的关键是:(1)利用相似三角形的性质找出=、=;(2)牢记“对角线互相平分的四边形是平行四边形”.
22、(1)见解析;(2).
【解析】
对于(1),由已知条件可以得到∠B=∠C,△ABC是等腰三角形,利用等腰三角形的性质易得AD⊥BC,∠ADC=90°;接下来不难得到∠ADC=∠BED,至此问题不难证明;
对于(2),利用勾股定理求出AD,利用相似比,即可求出DE.
【详解】
解:(1)证明:∵,
∴.
又∵为边上的中线,
∴.
∵,
∴,
∴.
(2)∵,∴.
在中,根据勾股定理,得.
由(1)得,∴,
即,
∴.
【点睛】
此题考查相似三角形的判定与性质,解题关键在于掌握判定定理.
23、证明见解析.
【解析】
试题分析:作于点F,然后证明≌ ,从而求出所所以BM与CN的长度相等.
试题解析:在矩形ABCD中,AD=2AB,E是AD的中点,作EF⊥BC于点F,
则有AB=AE=EF=FC,
∴∠AEM=∠FEN,
在Rt△AME和Rt△FNE中,
∵E为AB的中点,
∴AB=CF,
∠AEM=∠FEN,AE=EF,∠MAE=∠NFE,
∴Rt△AME≌Rt△FNE,
∴AM=FN,
∴MB=CN.
24、(1).(2)公平.
【解析】
试题分析:(1)首先根据题意结合概率公式可得答案;
(2)首先根据(1)求得摸出两张牌面图形都是轴对称图形的有16种情况,若摸出两张牌面图形都是中心对称图形的有12种情况,继而求得小明赢与小亮赢的概率,比较概率的大小,即可知这个游戏是否公平.
试题解析:(1)共有4张牌,正面是中心对称图形的情况有3种,所以摸到正面是中心对称图形的纸牌的概率是;
(2)列表得:
| A | B | C | D |
A |
| (A,B) | (A,C) | (A,D) |
B | (B,A) |
| (B,C) | (B,D) |
C | (C,A) | (C,B) |
| (C,D) |
D | (D,A) | (D,B) | (D,C) |
|
共产生12种结果,每种结果出现的可能性相同,其中两张牌都是轴对称图形的有6种,
∴P(两张都是轴对称图形)=,因此这个游戏公平.
考点:游戏公平性;轴对称图形;中心对称图形;概率公式;列表法与树状图法.
合肥市瑶海区2021-2022学年中考数学考前最后一卷含解析: 这是一份合肥市瑶海区2021-2022学年中考数学考前最后一卷含解析,共19页。试卷主要包含了若分式有意义,则x的取值范围是等内容,欢迎下载使用。
2021-2022学年山西农业大附中中考数学考前最后一卷含解析: 这是一份2021-2022学年山西农业大附中中考数学考前最后一卷含解析,共24页。试卷主要包含了如图,直线与y轴交于点,下列说法正确的是等内容,欢迎下载使用。
2021-2022学年潜江市中考数学考前最后一卷含解析: 这是一份2021-2022学年潜江市中考数学考前最后一卷含解析,共21页。试卷主要包含了答题时请按要求用笔,若分式有意义,则x的取值范围是,下列运算正确的是等内容,欢迎下载使用。