开学活动
搜索
    上传资料 赚现金

    如皋实验初中重点中学2022年中考数学猜题卷含解析

    如皋实验初中重点中学2022年中考数学猜题卷含解析第1页
    如皋实验初中重点中学2022年中考数学猜题卷含解析第2页
    如皋实验初中重点中学2022年中考数学猜题卷含解析第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    如皋实验初中重点中学2022年中考数学猜题卷含解析

    展开

    这是一份如皋实验初中重点中学2022年中考数学猜题卷含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.把直线l:y=kx+b绕着原点旋转180°,再向左平移1个单位长度后,经过点A(-2,0)和点B(0,4),则直线l的表达式是( )
    A.y=2x+2 B.y=2x-2 C.y=-2x+2 D.y=-2x-2
    2.通州区大运河森林公园占地面积10700亩,是北京规模最大的滨河森林公园,将10700用科学记数法表示为( )

    A.10.7×104 B.1.07×105 C.1.7×104 D.1.07×104
    3.若正六边形的边长为6,则其外接圆半径为( )
    A.3 B.3 C.3 D.6
    4.如图,将一张三角形纸片的一角折叠,使点落在处的处,折痕为.如果,,,那么下列式子中正确的是( )

    A. B. C. D.
    5.如图,在已知的△ ABC中,按以下步骤作图:①分别以B、C为圆心,以大于BC的长为半径作弧,两弧相交于点M、N;②作直线MN交AB于点D,连接CD,则下列结论正确的是(  )

    A.CD+DB=AB B.CD+AD=AB C.CD+AC=AB D.AD+AC=AB
    6.如图,在矩形ABCD中,AB=2,BC=1.若点E是边CD的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为(  )

    A. B. C. D.
    7.罚球是篮球比赛中得分的一个组成部分,罚球命中率的高低对篮球比赛的结果影响很大.如图是对某球员罚球训练时命中情况的统计:

    下面三个推断:①当罚球次数是500时,该球员命中次数是411,所以“罚球命中”的概率是0.822;②随着罚球次数的增加,“罚球命中”的频率总在0.812附近摆动,显示出一定的稳定性,可以估计该球员“罚球命中”的概率是0.812;③由于该球员“罚球命中”的频率的平均值是0.1,所以“罚球命中”的概率是0.1.其中合理的是( )
    A.① B.② C.①③ D.②③
    8.下列四个几何体,正视图与其它三个不同的几何体是(  )
    A. B.
    C. D.
    9.一元一次不等式组的解集中,整数解的个数是( )
    A.4 B.5 C.6 D.7
    10.如图,已知是的角平分线,是的垂直平分线,,,则的长为( )

    A.6 B.5 C.4 D.
    11.某排球队名场上队员的身高(单位:)是:,,,,,.现用一名身高为的队员换下场上身高为的队员,与换人前相比,场上队员的身高( )
    A.平均数变小,方差变小 B.平均数变小,方差变大
    C.平均数变大,方差变小 D.平均数变大,方差变大
    12.如图所示是小孔成像原理的示意图,根据图中所标注的尺寸,求出这支蜡烛在暗盒中所成像的长( )

    A. B. C. D.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.分式有意义时,x的取值范围是_____.
    14.如图,在四边形ABCD中,对角线AC,BD交于点O,OA=OC,OB=OD,添加一个条件使四边形ABCD是菱形,那么所添加的条件可以是___________(写出一个即可).

    15.把一张长方形纸条按如图所示折叠后,若∠AOB′=70°,则∠B′OG=_____.

    16.将一些形状相同的小五角星如图所示的规律摆放,据此规律,第10个图形有_______个五角星.

    17.如图,四边形ABCD与四边形EFGH位似,位似中心点是点O,,则=_____.

    18.如图,四边形ABCD内接于⊙O,AB是⊙O的直径,过点C作⊙O的切线交AB的延长线于点P,若∠P=40°,则∠ADC=____°.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,已知⊙O经过△ABC的顶点A、B,交边BC于点D,点A恰为的中点,且BD=8,AC=9,sinC=,求⊙O的半径.

    20.(6分) “春节”是我国的传统佳节,民间历来有吃“汤圆”的习俗.某食品厂为了解市民对去年销量较好的肉馅(A)、豆沙馅 (B)、菜馅(C)、三丁馅 (D)四种不同口味汤圆的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:
    (1)本次参加抽样调查的居民人数是   人;
    (2)将图 ①②补充完整;( 直接补填在图中)
    (3)求图②中表示“A”的圆心角的度数;
    (4)若居民区有8000人,请估计爱吃D汤圆的人数.

    21.(6分)如图所示,AB是⊙O的一条弦,DB切⊙O于点B,过点D作DC⊥OA于点C,DC与AB相交于点E.
    (1)求证:DB=DE;
    (2)若∠BDE=70°,求∠AOB的大小.

    22.(8分)已知:如图,在平面直角坐标系xOy中,抛物线的图像与x轴交于点A(3,0),与y轴交于点B,顶点C在直线上,将抛物线沿射线 AC的方向平移,
    当顶点C恰好落在y轴上的点D处时,点B落在点E处.
    (1)求这个抛物线的解析式;
    (2)求平移过程中线段BC所扫过的面积;
    (3)已知点F在x轴上,点G在坐标平面内,且以点 C、E、F、G 为顶点的四边形是矩形,求点F的坐标.

    23.(8分)灞桥区教育局为了了解七年级学生参加社会实践活动情况,随机抽取了铁一中滨河学部分七年级学生2016﹣2017学年第一学期参加实践活动的天数,并用得到的数据绘制了两幅统计图,下面给出了两幅不完整的统计图.
    请根据图中提供的信息,回答下列问题:a=   %,并补全条形图.在本次抽样调查中,众数和中位数分别是多少?如果该区共有七年级学生约9000人,请你估计活动时间不少于6天的学生人数大约有多少?

    24.(10分)向阳中学校园内有一条林萌道叫“勤学路”,道路两边有如图所示的路灯(在铅垂面内的示意图),灯柱BC的高为10米,灯柱BC与灯杆AB的夹角为120°.路灯采用锥形灯罩,在地面上的照射区域DE的长为13.3米,从D、E两处测得路灯A的仰角分别为α和45°,且tanα=1.求灯杆AB的长度.

    25.(10分)如图,在Rt△ABC中,∠C=90°,O、D分别为AB、AC上的点,经过A、D两点的⊙O分别交于AB、AC于点E、F,且BC与⊙O相切于点D.
    (1)求证:;
    (2)当AC=2,CD=1时,求⊙O的面积.

    26.(12分)如图,四边形ABCD中,对角线AC,BD相交于点O,点E,F分别在OA,OC上.
    (1)给出以下条件;①OB=OD,②∠1=∠2,③OE=OF,请你从中选取两个条件证明△BEO≌△DFO;
    (2)在(1)条件中你所选条件的前提下,添加AE=CF,求证:四边形ABCD是平行四边形.

    27.(12分)如图,一次函数y=kx+b的图象与反比例函数y=的图象交于点A(-3,m+8),B(n,-6)两点.
    (1)求一次函数与反比例函数的解析式;
    (2)求△AOB的面积.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、B
    【解析】
    先利用待定系数法求出直线AB的解析式,再求出将直线AB向右平移1个单位长度后得到的解析式,然后将所得解析式绕着原点旋转180°即可得到直线l.
    【详解】
    解:设直线AB的解析式为y=mx+n.
    ∵A(−2,0),B(0,1),
    ∴ ,
    解得 ,
    ∴直线AB的解析式为y=2x+1.
    将直线AB向右平移1个单位长度后得到的解析式为y=2(x−1)+1,即y=2x+2,
    再将y=2x+2绕着原点旋转180°后得到的解析式为−y=−2x+2,即y=2x−2,
    所以直线l的表达式是y=2x−2.
    故选:B.
    【点睛】
    本题考查了一次函数图象平移问题,掌握解析式“左加右减”的规律以及关于原点对称的规律是解题的关键.
    2、D
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    解:10700=1.07×104,
    故选:D.
    【点睛】
    此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    3、D
    【解析】
    连接正六边形的中心和各顶点,得到六个全等的正三角形,于是可知正六边形的边长等于正三角形的边长,为正六边形的外接圆半径.
    【详解】
    如图为正六边形的外接圆,ABCDEF是正六边形,
    ∴∠AOF=10°, ∵OA=OF, ∴△AOF是等边三角形,∴OA=AF=1.

    所以正六边形的外接圆半径等于边长,即其外接圆半径为1.
    故选D.
    【点睛】
    本题考查了正六边形的外接圆的知识,解题的关键是画出图形,找出线段之间的关系.
    4、A
    【解析】
    分析:根据三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得结论.
    详解:

    由折叠得:∠A=∠A',
    ∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',
    ∵∠A=α,∠CEA′=β,∠BDA'=γ,
    ∴∠BDA'=γ=α+α+β=2α+β,
    故选A.
    点睛:本题考查了三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键.
    5、B
    【解析】
    作弧后可知MN⊥CB,且CD=DB.
    【详解】
    由题意性质可知MN是BC的垂直平分线,则MN⊥CB,且CD=DB,则CD+AD=AB.
    【点睛】
    了解中垂线的作图规则是解题的关键.
    6、B
    【解析】
    根据S△ABE=S矩形ABCD=1=•AE•BF,先求出AE,再求出BF即可.
    【详解】
    如图,连接BE.

    ∵四边形ABCD是矩形,
    ∴AB=CD=2,BC=AD=1,∠D=90°,
    在Rt△ADE中,AE===,
    ∵S△ABE=S矩形ABCD=1=•AE•BF,
    ∴BF=.
    故选:B.
    【点睛】
    本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,属于中考常考题型.
    7、B
    【解析】
    根据图形和各个小题的说法可以判断是否正确,从而解答本题
    【详解】
    当罚球次数是500时,该球员命中次数是411,所以此时“罚球命中”的频率是:411÷500=0.822,但“罚球命中”的概率不一定是0.822,故①错误;
    随着罚球次数的增加,“罚球命中”的频率总在0.2附近摆动,显示出一定的稳定性,可以估计该球员“罚球命中”的概率是0.2.故②正确;
    虽然该球员“罚球命中”的频率的平均值是0.1,但是“罚球命中”的概率不是0.1,故③错误.
    故选:B.
    【点睛】
    此题考查了频数和频率的意义,解题的关键在于利用频率估计概率.
    8、C
    【解析】
    根据几何体的三视图画法先画出物体的正视图再解答.
    【详解】
    解:A、B、D三个几何体的主视图是由左上一个正方形、下方两个正方形构成的,
    而C选项的几何体是由上方2个正方形、下方2个正方形构成的,
    故选:C.
    【点睛】
    此题重点考查学生对几何体三视图的理解,掌握几何体的主视图是解题的关键.
    9、C
    【解析】
    试题分析:∵解不等式得:,解不等式,得:x≤5,∴不等式组的解集是,整数解为0,1,2,3,4,5,共6个,故选C.
    考点:一元一次不等式组的整数解.
    10、D
    【解析】
    根据ED是BC的垂直平分线、BD是角平分线以及∠A=90°可求得∠C=∠DBC=∠ABD=30°,从而可得CD=BD=2AD=6,然后利用三角函数的知识进行解答即可得.
    【详解】
    ∵ED是BC的垂直平分线,
    ∴DB=DC,
    ∴∠C=∠DBC,
    ∵BD是△ABC的角平分线,
    ∴∠ABD=∠DBC,
    ∵∠A=90°,∴∠C+∠ABD+∠DBC=90°,
    ∴∠C=∠DBC=∠ABD=30°,
    ∴BD=2AD=6,
    ∴CD=6,
    ∴CE =3,
    故选D.
    【点睛】
    本题考查了线段垂直平分线的性质,三角形内角和定理,含30度角的直角三角形的性质,余弦等,结合图形熟练应用相关的性质及定理是解题的关键.
    11、A
    【解析】
    分析:根据平均数的计算公式进行计算即可,根据方差公式先分别计算出甲和乙的方差,再根据方差的意义即可得出答案.
    详解:换人前6名队员身高的平均数为==188,
    方差为S2==;
    换人后6名队员身高的平均数为==187,
    方差为S2==
    ∵188>187,>,
    ∴平均数变小,方差变小,
    故选:A.
    点睛:本题考查了平均数与方差的定义:一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1-)2+(x2-)2+…+(xn-)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
    12、D
    【解析】
    过O作直线OE⊥AB,交CD于F,由CD//AB可得△OAB∽△OCD,根据相似三角形对应边的比等于对应高的比列方程求出CD的值即可.
    【详解】
    过O作直线OE⊥AB,交CD于F,
    ∵AB//CD,
    ∴OF⊥CD,OE=12,OF=2,
    ∴△OAB∽△OCD,
    ∵OE、OF分别是△OAB和△OCD的高,
    ∴,即,
    解得:CD=1.

    故选D.
    【点睛】
    本题考查相似三角形的应用,解题的关键在于理解小孔成像原理给我们带来的已知条件,熟记相似三角形对应边的比等于对应高的比是解题关键.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、x<1
    【解析】
    要使代数式有意义时,必有1﹣x>2,可解得x的范围.
    【详解】
    根据题意得:1﹣x>2,
    解得:x<1.
    故答案为x<1.
    【点睛】
    考查了分式和二次根式有意义的条件.二次根式有意义,被开方数为非负数,分式有意义,分母不为2.
    14、AB=AD(答案不唯一).
    【解析】
    已知OA=OC,OB=OD,可得四边形ABCD是平行四边形,再根据菱形的判定定理添加邻边相等或对角线垂直即可判定该四边形是菱形.所以添加条件AB=AD或BC=CD或AC⊥BD,本题答案不唯一,符合条件即可.
    15、55°
    【解析】
    由翻折性质得,∠BOG=∠B′OG,根据邻补角定义可得.
    【详解】
    解:由翻折性质得,∠BOG=∠B′OG,
    ∵∠AOB′+∠BOG+∠B′OG=180°,
    ∴∠B′OG=(180°﹣∠AOB′)=(180°﹣70°)=55°.
    故答案为55°.
    【点睛】
    考核知识点:补角,折叠.
    16、1.
    【解析】
    寻找规律:不难发现,第1个图形有3=22-1个小五角星;第2个图形有8=32-1个小五角星;第3个图形有15=42-1个小五角星;…第n个图形有(n+1)2-1个小五角星.
    ∴第10个图形有112-1=1个小五角星.
    17、
    【解析】
    试题分析:∵四边形ABCD与四边形EFGH位似,位似中心点是点O,
    ∴==,
    则===.
    故答案为.
    点睛:本题考查的是位似变换的性质,掌握位似图形与相似图形的关系、相似多边形的性质是解题的关键.
    18、115°
    【解析】
    根据过C点的切线与AB的延长线交于P点,∠P=40°,可以求得∠OCP和∠OBC的度数,又根据圆内接四边形对角互补,可以求得∠D的度数,本题得以解决.
    【详解】
    解:连接OC,如右图所示,
    由题意可得,∠OCP=90°,∠P=40°,
    ∴∠COB=50°,
    ∵OC=OB,
    ∴∠OCB=∠OBC=65°,
    ∵四边形ABCD是圆内接四边形,
    ∴∠D+∠ABC=180°,
    ∴∠D=115°,
    故答案为:115°.
    【点睛】
    本题考查切线的性质、圆内接四边形,解题的关键是明确题意,找出所求问题需要的条件.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、⊙O的半径为.
    【解析】
    如图,连接OA.交BC于H.首先证明OA⊥BC,在Rt△ACH中,求出AH,设⊙O的半径为r,在Rt△BOH中,根据BH2+OH2=OB2,构建方程即可解决问题。
    【详解】
    解:如图,连接OA.交BC于H.

    ∵点A为的中点,
    ∴OA⊥BD,BH=DH=4,
    ∴∠AHC=∠BHO=90°,
    ∵,AC=9,
    ∴AH=3,
    设⊙O的半径为r,
    在Rt△BOH中,∵BH2+OH2=OB2,
    ∴42+(r﹣3)2=r2,
    ∴r=,
    ∴⊙O的半径为.
    【点睛】
    本题考查圆心角、弧、弦的关系、垂径定理、勾股定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.
    20、(1)600;(2)120人,20%;30%;(3)108°(4)爱吃D汤圆的人数约为3200人
    【解析】
    试题分析:
    (1)由两幅统计图中的信息可知,喜欢B类的有60人,占被调查人数的10%,由此即可计算出被调查的总人数为60÷10%=600(人);
    (2)由(1)中所得被调查总人数为600人结合统计图中已有的数据可得喜欢C类的人数为:600-180-60-240=120(人),喜欢C类的占总人数的百分比为:120÷600×100%=20%,喜欢A类的占总人数的百分比为:180÷600×100%=30%,由此即可将统计图补充完整;
    (3)由(2)中所得数据可得扇形统计图中A类所对应的圆心角度数为:360°×30%=108°;
    (4)由扇形统计图中的信息:喜欢D类的占总人数的40%可得:8000×40%=3200(人);
    试题解析:
    (1)本次参加抽样调查的居民的人数是:60÷10%=600(人);
    故答案为600;
    (2)由题意得:C的人数为600﹣(180+60+240)=600﹣480=120(人),C的百分比为120÷600×100%=20%;A的百分比为180÷600×100%=30%;
    将两幅统计图补充完整如下所示:

    (3)根据题意得:360°×30%=108°,
    ∴图②中表示“A”的圆心角的度数108°;
    (4)8000×40%=3200(人),
    即爱吃D汤圆的人数约为3200人.
    21、(1)证明见解析;(2)110°.
    【解析】
    分析:(1)欲证明DB=DE,只要证明∠BED=∠ABD即可;
    (2)因为△OAB是等腰三角形,属于只要求出∠OBA即可解决问题;
    详解:(1)证明:∵DC⊥OA,
    ∴∠OAB+∠CEA=90°,
    ∵BD为切线,
    ∴OB⊥BD,
    ∴∠OBA+∠ABD=90°,
    ∵OA=OB,
    ∴∠OAB=∠OBA,
    ∴∠CEA=∠ABD,
    ∵∠CEA=∠BED,
    ∴∠BED=∠ABD,
    ∴DE=DB.
    (2)∵DE=DB,∠BDE=70°,
    ∴∠BED=∠ABD=55°,
    ∵BD为切线,
    ∴OB⊥BD,
    ∴∠OBA=35°,
    ∵OA=OB,
    ∴∠OBA=180°-2×35°=110°.
    点睛:本题考查圆周角定理、切线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
    22、(1)抛物线的解析式为;(2)12; (1)满足条件的点有F1(,0),F2(,0),F1(,0),F4(,0).
    【解析】
    分析:(1)根据对称轴方程求得b=﹣4a,将点A的坐标代入函数解析式求得9a+1b+1=0,联立方程组,求得系数的值即可;
    (2)抛物线在平移的过程中,线段BC所扫过的面积为平行四边形BCDE的面积,根据二次函数图象上点的坐标特征和三角形的面积得到:∴.
    (1)联结CE.分类讨论:(i)当CE为矩形的一边时,过点C作CF1⊥CE,交x轴于点F1,设点F1(a,0).在Rt△OCF1中,利用勾股定理求得a的值;
    (ii)当CE为矩形的对角线时,以点O为圆心,OC长为半径画弧分别交x轴于点F1、F4,利用圆的性质解答.
    详解:(1)∵顶点C在直线x=2上,∴,∴b=﹣4a.
    将A(1,0)代入y=ax2+bx+1,得:9a+1b+1=0,解得:a=1,b=﹣4,
    ∴抛物线的解析式为y=x2﹣4x+1.
    (2)过点C作CM⊥x轴,CN⊥y轴,垂足分别为M、N.
    ∵y=x2﹣4x+1═(x﹣2)2﹣1,∴C(2,﹣1).
    ∵CM=MA=1,∴∠MAC=45°,∴∠ODA=45°,∴OD=OA=1.
    ∵抛物线y=x2﹣4x+1与y轴交于点B,∴B(0,1),∴BD=2.
    ∵抛物线在平移的过程中,线段BC所扫过的面积为平行四边形BCDE的面积,∴.
    (1)联结CE.
    ∵四边形BCDE是平行四边形,∴点O是对角线CE与BD的交点,即 .
    (i)当CE为矩形的一边时,过点C作CF1⊥CE,交x轴于点F1,设点F1(a,0).在Rt△OCF1中,,即 a2=(a﹣2)2+5,解得: ,∴点.
    同理,得点;
    (ii)当CE为矩形的对角线时,以点O为圆心,OC长为半径画弧分别交x轴于点F1、F4,可得: ,得点、.
    综上所述:满足条件的点有),.

    点睛:本题考查了待定系数法求二次函数的解析式,二次函数图象上点的坐标特征,平行四边形的面积公式,正确的理解题意是解题的关键.
    23、(1)10,补图见解析;(2)众数是5,中位数是1;(3)活动时间不少于1天的学生人数大约有5400人.
    【解析】
    (1)用1减去其他天数所占的百分比即可得到a的值,用310°乘以它所占的百分比,即可求出该扇形所对圆心角的度数;根据1天的人数和所占的百分比求出总人数,再乘以8天的人数所占的百分比,即可补全统计图;
    (2)根据众数和中位数的定义即可求出答案;
    (3)用总人数乘以活动时间不少于1天的人数所占的百分比即可求出答案.
    【详解】
    解:(1)扇形统计图中a=1﹣5%﹣40%﹣20%﹣25%=10%,
    该扇形所对圆心角的度数为310°×10%=31°,
    参加社会实践活动的天数为8天的人数是:×10%=10(人),补图如下:

    故答案为10;
    (2)抽样调查中总人数为100人,
    结合条形统计图可得:众数是5,中位数是1.
    (3)根据题意得:9000×(25%+10%+5%+20%)=5400(人),
    活动时间不少于1天的学生人数大约有5400人.
    【点睛】
    本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
    24、灯杆AB的长度为2.3米.
    【解析】
    过点A作AF⊥CE,交CE于点F,过点B作BG⊥AF,交AF于点G,则FG=BC=2.设AF=x知EF=AF=x、DF==,由DE=13.3求得x=11.4,据此知AG=AF﹣GF=1.4,再求得∠ABG=∠ABC﹣∠CBG=30°可得AB=2AG=2.3.
    【详解】
    过点A作AF⊥CE,交CE于点F,过点B作BG⊥AF,交AF于点G,则FG=BC=2.

    由题意得:∠ADE=α,∠E=45°.
    设AF=x.
    ∵∠E=45°,∴EF=AF=x.
    在Rt△ADF中,∵tan∠ADF=,∴DF==.
    ∵DE=13.3,∴x+=13.3,∴x=11.4,∴AG=AF﹣GF=11.4﹣2=1.4.
    ∵∠ABC=120°,∴∠ABG=∠ABC﹣∠CBG=120°﹣90°=30°,∴AB=2AG=2.3.
    答:灯杆AB的长度为2.3米.
    【点睛】
    本题主要考查解直角三角形﹣仰角俯角问题,解题的关键是结合题意构建直角三角形并熟练掌握三角函数的定义及其应用能力.
    25、(1)证明见解析;(2).
    【解析】
    (1)连接OD,由BC为圆O的切线,得到OD垂直于BC,再由AC垂直于BC,得到OD与AC平行,利用两直线平行得到一对内错角相等,再由OA=OD,利用等边对等角得到一对角相等,等量代换得到AD为角平分线,利用相等的圆周角所对的弧相等即可得证;
    (2)连接ED,在直角三角形ACD中,由AC与CD的长,利用勾股定理求出AD的长,由(1)得出的两个圆周角相等,及一对直角相等得到三角形ACD与三角形ADE相似,由相似得比例求出AE的长,进而求出圆的半径,即可求出圆的面积.
    【详解】
    证明:连接OD,

    ∵BC为圆O的切线,
    ∴OD⊥CB,
    ∵AC⊥CB,
    ∴OD∥AC,
    ∴∠CAD=∠ODA,
    ∵OA=OD,
    ∴∠OAD=∠ODA,
    ∴∠CAD=∠OAD,
    则 ;
    (2)解:连接ED,
    在Rt△ACD中,AC=2,CD=1,
    根据勾股定理得:AD= ,
    ∵∠CAD=∠OAD,∠ACD=∠ADE=90°,
    ∴△ACD∽△ADE,
    ∴,即AD2=AC•AE,
    ∴AE=,即圆的半径为 ,
    则圆的面积为 .
    【点睛】
    此题考查了切线的性质,圆周角定理,相似三角形的判定与性质,以及勾股定理,熟练掌握相关性质是解本题的关键.
    26、(1)见解析;(2)见解析.
    【解析】
    试题分析:(1)选取①②,利用ASA判定△BEO≌△DFO;也可选取②③,利用AAS判定△BEO≌△DFO;还可选取①③,利用SAS判定△BEO≌△DFO;
    (2)根据△BEO≌△DFO可得EO=FO,BO=DO,再根据等式的性质可得AO=CO,根据两条对角线互相平分的四边形是平行四边形可得结论.
    试题解析:
    证明:(1)选取①②,
    ∵在△BEO和△DFO中,
    ∴△BEO≌△DFO(ASA);
    (2)由(1)得:△BEO≌△DFO,
    ∴EO=FO,BO=DO,
    ∵AE=CF,
    ∴AO=CO,
    ∴四边形ABCD是平行四边形.
    点睛:此题主要考查了平行四边形的判定,以及全等三角形的判定,关键是掌握两条对角线互相平分的四边形是平行四边形.
    27、(1)y=-,y=-2x-4(2)1
    【解析】
    (1)将点A坐标代入反比例函数求出m的值,从而得到点A的坐标以及反比例函数解析式,再将点B坐标代入反比例函数求出n的值,从而得到点B的坐标,然后利用待定系数法求一次函数解析式求解;
    (2)设AB与x轴相交于点C,根据一次函数解析式求出点C的坐标,从而得到点OC的长度,再根据S△AOB=S△AOC+S△BOC列式计算即可得解.
    【详解】
    (1)将A(﹣3,m+1)代入反比例函数y=得,
    =m+1,
    解得m=﹣6,
    m+1=﹣6+1=2,
    所以,点A的坐标为(﹣3,2),
    反比例函数解析式为y=﹣,
    将点B(n,﹣6)代入y=﹣得,﹣=﹣6,
    解得n=1,
    所以,点B的坐标为(1,﹣6),
    将点A(﹣3,2),B(1,﹣6)代入y=kx+b得,

    解得,
    所以,一次函数解析式为y=﹣2x﹣4;
    (2)设AB与x轴相交于点C,
    令﹣2x﹣4=0解得x=﹣2,
    所以,点C的坐标为(﹣2,0),
    所以,OC=2,
    S△AOB=S△AOC+S△BOC,
    =×2×2+×2×6,
    =2+6,
    =1.
    考点:反比例函数与一次函数的交点问题.

    相关试卷

    如皋实验初中重点中学2021-2022学年中考押题数学预测卷含解析:

    这是一份如皋实验初中重点中学2021-2022学年中考押题数学预测卷含解析,共18页。试卷主要包含了下列方程中,两根之和为2的是等内容,欢迎下载使用。

    2022年崇左市重点中学中考数学猜题卷含解析:

    这是一份2022年崇左市重点中学中考数学猜题卷含解析,共23页。试卷主要包含了分式方程的解为等内容,欢迎下载使用。

    2021-2022学年如皋实验初中重点中学中考数学模拟精编试卷含解析:

    这是一份2021-2022学年如皋实验初中重点中学中考数学模拟精编试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,的相反数是,估计﹣1的值为等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map