搜索
    上传资料 赚现金
    英语朗读宝

    山东省东明县2022年中考数学全真模拟试卷含解析

    山东省东明县2022年中考数学全真模拟试卷含解析第1页
    山东省东明县2022年中考数学全真模拟试卷含解析第2页
    山东省东明县2022年中考数学全真模拟试卷含解析第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    山东省东明县2022年中考数学全真模拟试卷含解析

    展开

    这是一份山东省东明县2022年中考数学全真模拟试卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,下列计算正确的是,不等式组的解集为,的绝对值是,下列叙述,错误的是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    考生请注意:
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.﹣2018的相反数是(  )
    A.﹣2018 B.2018 C.±2018 D.﹣
    2.如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD的周长为(  )

    A.24 B.18 C.12 D.9
    3.在以下四个图案中,是轴对称图形的是(  )
    A. B. C. D.
    4.下列计算正确的是(  )
    A.a2•a3=a6 B.(a2)3=a6 C.a2+a2=a3 D.a6÷a2=a3
    5.如图,在⊙O中,直径AB⊥弦CD,垂足为M,则下列结论一定正确的是( )

    A.AC=CD B.OM=BM C.∠A=∠ACD D.∠A=∠BOD
    6.不等式组的解集为.则的取值范围为( )
    A. B. C. D.
    7.的绝对值是( )
    A. B. C. D.
    8.实数a、b在数轴上的对应点的位置如图所示,则正确的结论是(  )

    A.a<﹣1 B.ab>0 C.a﹣b<0 D.a+b<0
    9.如图,在6×4的正方形网格中,△ABC的顶点均为格点,则sin∠ACB=(  )
    A. B.2 C. D.

    10.下列叙述,错误的是( )
    A.对角线互相垂直且相等的平行四边形是正方形
    B.对角线互相垂直平分的四边形是菱形
    C.对角线互相平分的四边形是平行四边形
    D.对角线相等的四边形是矩形
    二、填空题(共7小题,每小题3分,满分21分)
    11.a(a+b)﹣b(a+b)=_____.
    12.分解因式: _________.
    13.如图,在□ABCD中,AC与BD交于点M,点F在AD上,AF=6cm,BF=12cm,∠FBM=∠CBM,点E是BC的中点,若点P以1cm/秒的速度从点A出发,沿AD向点F运动;点Q同时以2cm/秒的速度从点C出发,沿CB向点B运动.点P运动到F点时停止运动,点Q也同时停止运动.当点P运动_____秒时,以点P、Q、E、F为顶点的四边形是平行四边形.

    14.如图,点是反比例函数图像上的两点(点在点左侧),过点作轴于点,交于点,延长交轴于点,已知,,则的值为__________.

    15.在计算器上,按照下面如图的程序进行操作:如表中的x与y分别是输入的6个数及相应的计算结果:上面操作程序中所按的第三个键和第四个键分别是_____、_____.

    x
    ﹣3
    ﹣2
    ﹣1
    0
    1
    2
    y
    ﹣5
    ﹣3
    ﹣1
    1
    3
    5

    16.如图,已知抛物线和x轴交于两点A、B,和y轴交于点C,已知A、B两点的横坐标分别为﹣1,4,△ABC是直角三角形,∠ACB=90°,则此抛物线顶点的坐标为_____.

    17.对于实数a,b,定义运算“※”如下:a※b=a2﹣ab,例如,5※3=52﹣5×3=1.若(x+1)※(x﹣2)=6,则x的值为_____.
    三、解答题(共7小题,满分69分)
    18.(10分)已知:四边形ABCD是平行四边形,点O是对角线AC、BD的交点,EF过点O且与AB、CD分别相交于点E、F,连接EC、AF.
    (1)求证:DF=EB;(2)AF与图中哪条线段平行?请指出,并说明理由.

    19.(5分)若一个三位数的十位数字比个位数字和百位数字都大,则称这个数为“伞数”.现从1,2,3,4这四个数字中任取3个数,组成无重复数字的三位数.
    (1)请画出树状图并写出所有可能得到的三位数;
    (2)甲、乙二人玩一个游戏,游戏规则是:若组成的三位数是“伞数”,则甲胜;否则乙胜.你认为这个游戏公平吗?试说明理由.
    20.(8分)在边长为1的5×5的方格中,有一个四边形OABC,以O点为位似中心,作一个四边形,使得所作四边形与四边形OABC位似,且该四边形的各个顶点都在格点上;求出你所作的四边形的面积.

    21.(10分)如图,足球场上守门员在处开出一高球,球从离地面1米的处飞出(在轴上),运动员乙在距点6米的处发现球在自己头的正上方达到最高点,距地面约4米高,球落地后又一次弹起.据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.
    求足球开始飞出到第一次落地时,该抛物线的表达式.足球第一次落地点距守门员多少米?(取)运动员乙要抢到第二个落点,他应再向前跑多少米?
    22.(10分)已知关于x的方程x1+(1k﹣1)x+k1﹣1=0有两个实数根x1,x1.求实数k的取值范围; 若x1,x1满足x11+x11=16+x1x1,求实数k的值.
    23.(12分)如图,△ABC中,CD是边AB上的高,且.
    求证:△ACD∽△CBD;求∠ACB的大小.
    24.(14分)如图,抛物线y=x2﹣2mx(m>0)与x轴的另一个交点为A,过P(1,﹣m)作PM⊥x轴于点M,交抛物线于点B,点B关于抛物线对称轴的对称点为C
    (1)若m=2,求点A和点C的坐标;
    (2)令m>1,连接CA,若△ACP为直角三角形,求m的值;
    (3)在坐标轴上是否存在点E,使得△PEC是以P为直角顶点的等腰直角三角形?若存在,求出点E的坐标;若不存在,请说明理由.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、B
    【解析】
    分析:只有符号不同的两个数叫做互为相反数.
    详解:-1的相反数是1.
    故选:B.
    点睛:本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.
    2、A
    【解析】
    【分析】易得BC长为EF长的2倍,那么菱形ABCD的周长=4BC问题得解.
    【详解】∵E是AC中点,
    ∵EF∥BC,交AB于点F,
    ∴EF是△ABC的中位线,
    ∴BC=2EF=2×3=6,
    ∴菱形ABCD的周长是4×6=24,
    故选A.
    【点睛】本题考查了三角形中位线的性质及菱形的周长公式,熟练掌握相关知识是解题的关键.
    3、A
    【解析】
    根据轴对称图形的概念对各选项分析判断利用排除法求解.
    【详解】
    A、是轴对称图形,故本选项正确;
    B、不是轴对称图形,故本选项错误;
    C、不是轴对称图形,故本选项错误;
    D、不是轴对称图形,故本选项错误.
    故选:A.
    【点睛】
    本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
    4、B
    【解析】
    试题解析:A.故错误.
    B.正确.
    C.不是同类项,不能合并,故错误.
    D.
    故选B.
    点睛:同底数幂相乘,底数不变,指数相加.
    同底数幂相除,底数不变,指数相减.
    5、D
    【解析】
    根据垂径定理判断即可.
    【详解】
    连接DA.
    ∵直径AB⊥弦CD,垂足为M,∴CM=MD,∠CAB=∠DAB.
    ∵2∠DAB=∠BOD,∴∠CAD=∠BOD.

    故选D.
    【点睛】
    本题考查的是垂径定理和圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.
    6、B
    【解析】
    求出不等式组的解集,根据已知得出关于k的不等式,求出不等式的解集即可.
    【详解】
    解:解不等式组,得.
    ∵不等式组的解集为x<2,
    ∴k+1≥2,
    解得k≥1.
    故选:B.
    【点睛】
    本题考查了解一元一次不等式组的应用,解此题的关键是能根据不等式组的解集和已知得出关于k的不等式,难度适中.
    7、C
    【解析】
    根据数轴上某个数与原点的距离叫做这个数的绝对值的定义即可解决.
    【详解】
    在数轴上,点到原点的距离是,
    所以,的绝对值是,
    故选C.
    【点睛】
    错因分析  容易题,失分原因:未掌握绝对值的概念.
    8、C
    【解析】
    直接利用a,b在数轴上的位置,进而分别对各个选项进行分析得出答案.
    【详解】
    选项A,从数轴上看出,a在﹣1与0之间,
    ∴﹣1<a<0,
    故选项A不合题意;
    选项B,从数轴上看出,a在原点左侧,b在原点右侧,
    ∴a<0,b>0,
    ∴ab<0,
    故选项B不合题意;
    选项C,从数轴上看出,a在b的左侧,
    ∴a<b,
    即a﹣b<0,
    故选项C符合题意;
    选项D,从数轴上看出,a在﹣1与0之间,
    ∴1<b<2,
    ∴|a|<|b|,
    ∵a<0,b>0,
    所以a+b=|b|﹣|a|>0,
    故选项D不合题意.
    故选:C.
    【点睛】
    本题考查数轴和有理数的四则运算,解题的关键是掌握利用数轴表示有理数的大小.
    9、C
    【解析】
    如图,由图可知BD=2、CD=1、BC=,根据sin∠BCA=可得答案.
    【详解】
    解:如图所示,

    ∵BD=2、CD=1,
    ∴BC===,
    则sin∠BCA===,
    故选C.
    【点睛】
    本题主要考查解直角三角形,解题的关键是熟练掌握正弦函数的定义和勾股定理.
    10、D
    【解析】
    【分析】根据正方形的判定、平行四边形的判定、菱形的判定和矩形的判定定理对选项逐一进行分析,即可判断出答案.
    【详解】A. 对角线互相垂直且相等的平行四边形是正方形,正确,不符合题意;
    B. 对角线互相垂直平分的四边形是菱形,正确,不符合题意;
    C. 对角线互相平分的四边形是平行四边形,正确,不符合题意;
    D. 对角线相等的平行四边形是矩形,故D选项错误,符合题意,
    故选D.
    【点睛】本题考查了正方形的判定、平行四边形的判定、菱形的判定和矩形的判定等,熟练掌握相关判定定理是解答此类问题的关键.

    二、填空题(共7小题,每小题3分,满分21分)
    11、(a+b)(a﹣b).
    【解析】
    先确定公因式为(a+b),然后提取公因式后整理即可.
    【详解】
    a(a+b)﹣b(a+b)=(a+b)(a﹣b).
    【点睛】
    本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止.
    12、
    【解析】
    先提取公因式b,再利用完全平方公式进行二次分解.
    解答:解:a1b-1ab+b,
    =b(a1-1a+1),…(提取公因式)
    =b(a-1)1.…(完全平方公式)
    13、3或1
    【解析】
    由四边形ABCD是平行四边形得出:AD∥BC,AD=BC,∠ADB=∠CBD,又由∠FBM=∠CBM,即可证得FB=FD,求出AD的长,得出CE的长,设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,根据题意列出方程并解方程即可得出结果.
    【详解】
    解:∵四边形ABCD是平行四边形,
    ∴AD∥BC,AD=BC,
    ∴∠ADB=∠CBD,
    ∵∠FBM=∠CBM,
    ∴∠FBD=∠FDB,
    ∴FB=FD=12cm,
    ∵AF=6cm,
    ∴AD=18cm,
    ∵点E是BC的中点,
    ∴CE=BC=AD=9cm,
    要使点P、Q、E、F为顶点的四边形是平行四边形,则PF=EQ即可,
    设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,
    根据题意得:6-t=9-2t或6-t=2t-9,
    解得:t=3或t=1.
    故答案为3或1.
    【点睛】
    本题考查了平行四边形的判定与性质、等腰三角形的判定与性质以及一元一次方程的应用等知识.注意掌握分类讨论思想的应用是解此题的关键.
    14、
    【解析】
    过点B作BF⊥OC于点F,易证S△OAE=S四边形DEBF=,S△OAB=S四边形DABF,因为,所以,,又因为AD∥BF,所以S△BCF∽S△ACD,可得BF:AD=2:5,因为S△OAD=S△OBF,所以×OD×AD =×OF×BF,即BF:AD=2:5= OD:OF,易证:S△OED∽S△OBF,S△OED:S△OBF=4:25,S△OED:S四边形EDFB=4:21,所以S△OED= ,S△OBF= S△OED+ S四边形EDFB=+=, 即可得解:k=2 S△OBF=.
    【详解】
    解:过点B作BF⊥OC于点F,

    由反比例函数的比例系数|k|的意义可知:S△OAD=S△OBF,
    ∴S△OAD- S△OED =S△OBF一S△OED,即S△OAE=S四边形DEBF=,S△OA B=S四边形DABF,
    ∵,
    ∴,,
    ∵AD∥BF
    ∴S△BCF∽S△ACD,
    又∵,
    ∴BF:AD=2:5,
    ∵S△OAD=S△OBF,
    ∴×OD×AD =×OF×BF
    ∴BF:AD=2:5= OD:OF
    易证:S△OED∽S△OBF,
    ∴S△OED:S△OBF=4:25,S△OED:S四边形EDFB=4:21
    ∵S四边形EDFB=,
    ∴S△OED= ,S△OBF= S△OED+ S四边形EDFB=+=,
    ∴k=2 S△OBF=.
    故答案为.
    【点睛】
    本题考查反比例函数的比例系数|k|的几何意义,解题关键是熟练运用相似三角形的判定定理和性质定理.
    15、+, 1
    【解析】
    根据表格中数据求出x、y之间的关系,即可得出答案.
    【详解】
    解:根据表格中数据分析可得:
    x、y之间的关系为:y=2x+1,
    则按的第三个键和第四个键应是“+”“1”.
    故答案为+,1.
    【点睛】
    此题考查了有理数的运算,要求同学们能熟练应用计算器,会用科学记算器进行计算.
    16、( , )
    【解析】
    连接AC,根据题意易证△AOC∽△COB,则,求得OC=2,即点C的坐标为(0,2),可设抛物线解析式为y=a(x+1)(x﹣4),然后将C点坐标代入求解,最后将解析式化为顶点式即可.
    【详解】
    解:连接AC,
    ∵A、B两点的横坐标分别为﹣1,4,
    ∴OA=1,OB=4,
    ∵∠ACB=90°,
    ∴∠CAB+∠ABC=90°,
    ∵CO⊥AB,
    ∴∠ABC+∠BCO=90°,
    ∴∠CAB=∠BCO,
    又∵∠AOC=∠BOC=90°,
    ∴△AOC∽△COB,
    ∴,
    即=,
    解得OC=2,
    ∴点C的坐标为(0,2),
    ∵A、B两点的横坐标分别为﹣1,4,
    ∴设抛物线解析式为y=a(x+1)(x﹣4),
    把点C的坐标代入得,a(0+1)(0﹣4)=2,
    解得a=﹣,
    ∴y=﹣(x+1)(x﹣4)=﹣(x2﹣3x﹣4)=﹣(x﹣)2+,
    ∴此抛物线顶点的坐标为( , ).
    故答案为:( , ).

    【点睛】
    本题主要考查相似三角形的判定与性质,抛物线的顶点式,解此题的关键在于熟练掌握其知识点,利用相似三角形的性质求得关键点的坐标.
    17、2
    【解析】
    根据新定义运算对式子进行变形得到关于x的方程,解方程即可得解.
    【详解】
    由题意得,(x+2)2﹣(x+2)(x﹣2)=6,
    整理得,3x+3=6,
    解得,x=2,
    故答案为2.
    【点睛】
    本题考查了解方程,涉及到完全平方公式、多项式乘法的运算等,根据题意正确得到方程是解题的关键.

    三、解答题(共7小题,满分69分)
    18、(1)见解析;(2)AF∥CE,见解析.
    【解析】
    (1)直接利用全等三角三角形判定与性质进而得出△FOC≌△EOA(ASA),进而得出答案;
    (2)利用平行四边形的判定与性质进而得出答案.
    【详解】
    (1)证明:∵四边形ABCD是平行四边形,点O是对角线AC、BD的交点,

    ∴AO=CO,DC∥AB,DC=AB,
    ∴∠FCA=∠CAB,
    在△FOC和△EOA中

    ∴△FOC≌△EOA(ASA),
    ∴FC=AE,
    ∴DC-FC=AB-AE,
    即DF=EB;
    (2)AF∥CE,
    理由:∵FC=AE,FC∥AE,
    ∴四边形AECF是平行四边形,
    ∴AF∥CE.
    【点睛】
    此题主要考查了平行四边形的判定与性质以及全等三角形的判定与性质,正确得出△FOC≌△EOA(ASA)是解题关键.
    19、(1)见解析(2)不公平。理由见解析
    【解析】
    解:(1)画树状图得:

    所有得到的三位数有24个,分别为:123,124,132,134,142,143,213,214,231,234,241,243,312,314,321,324,341,342,412,,413,421,423,431,432。
    (2)这个游戏不公平。理由如下:
    ∵组成的三位数中是“伞数”的有:132,142,143,231,241,243,341,342,共有8个,
    ∴甲胜的概率为,乙胜的概率为。
    ∵甲胜的概率≠乙胜的概率,∴这个游戏不公平。
    (1)首先根据题意画出树状图,由树状图即可求得所有可能得到的三位数。
    (2)由(1),可求得甲胜和乙胜的概率,比较是否相等即可得到答案。
    20、(1)如图所示,见解析;四边形OA′B′C′即为所求;(2)S四边形OA′B′C′=1.
    【解析】
    (1)结合网格特点,分别作出点A、B、C关于点O成位似变换的对应点,再顺次连接即可得;
    (2)根据S四边形OA′B′C′=S△OA′B′+S△OB′C′计算可得.
    【详解】
    (1)如图所示,四边形OA′B′C′即为所求.

    (2)S四边形OA′B′C′=S△OA′B′+S△OB′C′
    =×4×4+×2×2
    =8+2
    =1.
    【点睛】
    本题考查了作图-位似变换:先确定位似中心;再分别连接并延长位似中心和能代表原图的关键点;接着根据位似比,确定能代表所作的位似图形的关键点;然后顺次连接上述各点,得到放大或缩小的图形.
    21、(1)(或)(2)足球第一次落地距守门员约13米.(3)他应再向前跑17米.
    【解析】
    (1)依题意代入x的值可得抛物线的表达式.
    (2)令y=0可求出x的两个值,再按实际情况筛选.
    (3)本题有多种解法.如图可得第二次足球弹出后的距离为CD,相当于将抛物线AEMFC向下平移了2个单位可得解得x的值即可知道CD、BD.
    【详解】
    解:(1)如图,设第一次落地时,
    抛物线的表达式为
    由已知:当时 

    表达式为(或)

    (2)令
    (舍去).
    足球第一次落地距守门员约13米.
    (3)解法一:如图,第二次足球弹出后的距离为
    根据题意:(即相当于将抛物线向下平移了2个单位)
    解得

    (米).
    答:他应再向前跑17米.
    22、 (2) k≤;(2)-2.
    【解析】
    试题分析:(2)根据方程的系数结合根的判别式,即可得出△=﹣4k+5≥0,解之即可得出实数k的取值范围;(2)由根与系数的关系可得x2+x2=2﹣2k、x2x2=k2﹣2,将其代入x22+x22=(x2+x2)2﹣2x2x2=26+x2x2中,解之即可得出k的值.
    试题解析:(2)∵关于x的方程x2+(2k﹣2)x+k2﹣2=0有两个实数根x2,x2,
    ∴△=(2k﹣2)2﹣4(k2﹣2)=﹣4k+5≥0,解得:k≤,
    ∴实数k的取值范围为k≤.
    (2)∵关于x的方程x2+(2k﹣2)x+k2﹣2=0有两个实数根x2,x2,
    ∴x2+x2=2﹣2k,x2x2=k2﹣2.∵x22+x22=(x2+x2)2﹣2x2x2=26+x2x2,
    ∴(2﹣2k)2﹣2×(k2﹣2)=26+(k2﹣2),即k2﹣4k﹣22=0,
    解得:k=﹣2或k=6(不符合题意,舍去).∴实数k的值为﹣2.
    考点:一元二次方程根与系数的关系,根的判别式.
    23、(1)证明见试题解析;(2)90°.
    【解析】
    试题分析:(1)由两边对应成比例且夹角相等的两个三角形相似,即可证明△ACD∽△CBD;
    (2)由(1)知△ACD∽△CBD,然后根据相似三角形的对应角相等可得:∠A=∠BCD,然后由∠A+∠ACD=90°,可得:∠BCD+∠ACD=90°,即∠ACB=90°.
    试题解析:(1)∵CD是边AB上的高,
    ∴∠ADC=∠CDB=90°,
    ∵.
    ∴△ACD∽△CBD;
    (2)∵△ACD∽△CBD,
    ∴∠A=∠BCD,
    在△ACD中,∠ADC=90°,
    ∴∠A+∠ACD=90°,
    ∴∠BCD+∠ACD=90°,
    即∠ACB=90°.
    考点:相似三角形的判定与性质.
    24、(1)A(4,0),C(3,﹣3);(2) m=;(3) E点的坐标为(2,0)或(,0)或(0,﹣4);
    【解析】
    方法一:(1)m=2时,函数解析式为y=,分别令y=0,x=1,即可求得点A和点B的坐标, 进而可得到点C的坐标;
    (2) 先用m表示出P, A C三点的坐标,分别讨论∠APC=,∠ACP=,∠PAC=三种情况, 利用勾股定理即可求得m的值;
    (3) 设点F(x,y)是直线PE上任意一点,过点F作FN⊥PM于N,可得Rt△FNP∽Rt△PBC,
    NP:NF=BC:BP求得直线PE的解析式,后利用△PEC是以P为直角顶点的等腰直角三角形求得E点坐标.
    方法二:(1)同方法一.
    (2) 由△ACP为直角三角形, 由相互垂直的两直线斜率相乘为-1,可得m的值;
    (3)利用△PEC是以P为直角顶点的等腰直角三角形,分别讨论E点再x轴上,y轴上的情况求得E点坐标.
    【详解】
    方法一:
    解:
    (1)若m=2,抛物线y=x2﹣2mx=x2﹣4x,
    ∴对称轴x=2,
    令y=0,则x2﹣4x=0,
    解得x=0,x=4,
    ∴A(4,0),
    ∵P(1,﹣2),令x=1,则y=﹣3,
    ∴B(1,﹣3),
    ∴C(3,﹣3).
    (2)∵抛物线y=x2﹣2mx(m>1),
    ∴A(2m,0)对称轴x=m,
    ∵P(1,﹣m)
    把x=1代入抛物线y=x2﹣2mx,则y=1﹣2m,
    ∴B(1,1﹣2m),
    ∴C(2m﹣1,1﹣2m),
    ∵PA2=(﹣m)2+(2m﹣1)2=5m2﹣4m+1,
    PC2=(2m﹣2)2+(1﹣m)2=5m2﹣10m+5,
    AC2=1+(1﹣2m)2=2﹣4m+4m2,
    ∵△ACP为直角三角形,
    ∴当∠ACP=90°时,PA2=PC2+AC2,
    即5m2﹣4m+1=5m2﹣10m+5+2﹣4m+4m2,整理得:4m2﹣10m+6=0,
    解得:m=,m=1(舍去),
    当∠APC=90°时,PA2+PC2=AC2,
    即5m2﹣4m+1+5m2﹣10m+5=2﹣4m+4m2,整理得:6m2﹣10m+4=0,
    解得:m=,m=1,和1都不符合m>1,
    故m=.
    (3)设点F(x,y)是直线PE上任意一点,过点F作FN⊥PM于N,
    ∵∠FPN=∠PCB,∠PNF=∠CBP=90°,
    ∴Rt△FNP∽Rt△PBC,
    ∴NP:NF=BC:BP,即=,
    ∴y=2x﹣2﹣m,
    ∴直线PE的解析式为y=2x﹣2﹣m.
    令y=0,则x=1+,
    ∴E(1+m,0),
    ∴PE2=(﹣m)2+(m)2=,
    ∴=5m2﹣10m+5,解得:m=2,m=,
    ∴E(2,0)或E(,0),
    ∴在x轴上存在E点,使得△PEC是以P为直角顶点的等腰直角三角形,此时E(2,0)或E(,0);
    令x=0,则y=﹣2﹣m,
    ∴E(0,﹣2﹣m)
    ∴PE2=(﹣2)2+12=5
    ∴5m2﹣10m+5=5,解得m=2,m=0(舍去),
    ∴E(0,﹣4)
    ∴y轴上存在点E,使得△PEC是以P为直角顶点的等腰直角三角形,此时E(0,﹣4),
    ∴在坐标轴上是存在点E,使得△PEC是以P为直角顶点的等腰直角三角形,E点的坐标为(2,0)或(,0)或(0,﹣4);
    方法二:
    (1)略.
    (2)∵P(1,﹣m),
    ∴B(1,1﹣2m),
    ∵对称轴x=m,
    ∴C(2m﹣1,1﹣2m),A(2m,0),
    ∵△ACP为直角三角形,
    ∴AC⊥AP,AC⊥CP,AP⊥CP,
    ①AC⊥AP,∴KAC×KAP=﹣1,且m>1,
    ∴,m=﹣1(舍)
    ②AC⊥CP,∴KAC×KCP=﹣1,且m>1,
    ∴=﹣1,∴m=,
    ③AP⊥CP,∴KAP×KCP=﹣1,且m>1,
    ∴=﹣1,∴m=(舍)
    (3)∵P(1,﹣m),C(2m﹣1,1﹣2m),
    ∴KCP=,
    △PEC是以P为直角顶点的等腰直角三角形,
    ∴PE⊥PC,∴KPE×KCP=﹣1,∴KPE=2,
    ∵P(1,﹣m),
    ∴lPE:y=2x﹣2﹣m,
    ∵点E在坐标轴上,
    ∴①当点E在x轴上时,
    E(,0)且PE=PC,
    ∴(1﹣)2+(﹣m)2=(2m﹣1﹣1)2+(1﹣2m+m)2,
    ∴m2=5(m﹣1)2,
    ∴m1=2,m2=,
    ∴E1(2,0),E2(,0),
    ②当点E在y轴上时,E(0,﹣2﹣m)且PE=PC,
    ∴(1﹣0)2+(﹣m+2+m)2=(2m﹣1﹣1)2+(1﹣2m+m)2,
    ∴1=(m﹣1)2,
    ∴m1=2,m2=0(舍),
    ∴E(0,4),
    综上所述,(2,0)或(,0)或(0,﹣4).
    【点睛】
    本题主要考查二次函数的图象与性质.
    扩展:
    设坐标系中两点坐标分别为点A(), 点B(), 则线段AB的长度为:
    AB=.
    设平面内直线AB的解析式为:,直线CD的解析式为:
    (1)若AB//CD,则有:;
    (2)若AB⊥CD,则有:.

    相关试卷

    2022年山东省淄博市临淄区中考数学全真模拟试卷含解析:

    这是一份2022年山东省淄博市临淄区中考数学全真模拟试卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,如图,,,则的大小是,下列运算中正确的是等内容,欢迎下载使用。

    2022年山东省菏泽市东明县中考数学对点突破模拟试卷含解析:

    这是一份2022年山东省菏泽市东明县中考数学对点突破模拟试卷含解析,共21页。试卷主要包含了下列哪一个是假命题等内容,欢迎下载使用。

    2022届山东省庆云县联考中考数学全真模拟试卷含解析:

    这是一份2022届山东省庆云县联考中考数学全真模拟试卷含解析,共19页。试卷主要包含了下列运算正确的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map