终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    山东省定陶县2021-2022学年中考试题猜想数学试卷含解析

    立即下载
    加入资料篮
    山东省定陶县2021-2022学年中考试题猜想数学试卷含解析第1页
    山东省定陶县2021-2022学年中考试题猜想数学试卷含解析第2页
    山东省定陶县2021-2022学年中考试题猜想数学试卷含解析第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    山东省定陶县2021-2022学年中考试题猜想数学试卷含解析

    展开

    这是一份山东省定陶县2021-2022学年中考试题猜想数学试卷含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号,的相反数是,下列运算正确的是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.由一些大小相同的小正方体搭成的几何体的俯视图如图所示,其中正方形中的数字表示该位置上的小正方体的个数,那么该几何体的主视图是(  )

    A. B. C. D.
    2.如图,剪两张对边平行且宽度相同的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是(  )

    A.∠ABC=∠ADC,∠BAD=∠BCD B.AB=BC
    C.AB=CD,AD=BC D.∠DAB+∠BCD=180°
    3.下列各数中,最小的数是( )
    A.﹣4 B.3 C.0 D.﹣2
    4.如图是由若干个小正方体组成的几何体从上面看到的图形,小正方形中的数字表示该位置小正方体的个数,这个几何体从正面看到的图形是( )

    A. B. C. D.
    5.的相反数是
    A. B.2 C. D.
    6.已知方程的两个解分别为、,则的值为()
    A. B. C.7 D.3
    7.下列四个几何体中,主视图是三角形的是(  )
    A. B. C. D.
    8.如图,点A为∠α边上任意一点,作AC⊥BC于点C,CD⊥AB于点D,下列用线段比表示cosα的值,错误的是(   )

    A. B. C. D.
    9.关于x的方程x2﹣3x+k=0的一个根是2,则常数k的值为(  )
    A.1 B.2 C.﹣1 D.﹣2
    10.下列运算正确的是(  )
    A.a2+a3=a5 B.(a3)2÷a6=1 C.a2•a3=a6 D.(+)2=5
    二、填空题(共7小题,每小题3分,满分21分)
    11.计算:=_______.
    12.图①是一个三角形,分别连接这个三角形的中点得到图②;再分别连接图②中间小三角形三边的中点,得到图③.按上面的方法继续下去,第n个图形中有_____个三角形(用含字母n的代数式表示).

    13.如图,直线经过正方形的顶点分别过此正方形的顶点、作于点、 于点.若,则的长为________.

    14.某种商品每件进价为10元,调查表明:在某段时间内若以每件x元(10≤x≤20且x为整数)出售,可卖出(20﹣x)件,若使利润最大,则每件商品的售价应为_____元.
    15.一个几何体的三视图如左图所示,则这个几何体是( )

    A. B. C. D.
    16.如图,⊙O在△ABC三边上截得的弦长相等,∠A=70°,则∠BOC=_____度.

    17.若一个正多边形的内角和是其外角和的3倍,则这个多边形的边数是______.
    三、解答题(共7小题,满分69分)
    18.(10分)如图,△ABC的顶点坐标分别为A(1,3)、B(4,1)、C(1,1).在图中以点O为位似中心在原点的另一侧画出△ABC放大1倍后得到的△A1B1C1,并写出A1的坐标;请在图中画出△ABC绕点O逆时针旋转90°后得到的△A1B1C1.

    19.(5分)如图,抛物线y=﹣x2﹣x+4与x轴交于A,B两点(A在B的左侧),与y轴交于点C.
    (1)求点A,点B的坐标;
    (2)P为第二象限抛物线上的一个动点,求△ACP面积的最大值.

    20.(8分)为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中男生、女生的人数相同,利用所得数据绘制如下统计图表:

    组别
    身高
    A
    x<160
    B
    160≤x<165
    C
    165≤x<170
    D
    170≤x<175
    E
    x≥175
    根据图表提供的信息,回答下列问题:
    (1)样本中,男生的身高众数在 组,中位数在 组;
    (2)样本中,女生身高在E组的有 人,E组所在扇形的圆心角度数为 ;
    (3)已知该校共有男生600人,女生480人,请估让身高在165≤x<175之间的学生约有多少人?
    21.(10分)已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).
    (1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是  ;
    (2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是   ;
    (3)△A2B2C2的面积是   平方单位.

    22.(10分)阅读下列材料,解答下列问题:
    材料1.把一个多项式化成几个整式的积的形式,这种变形叫做因式分解,也叫分解因式.如果把整式的乘法看成一个变形过程,那么多项式的因式分解就是它的逆过程.
    公式法(平方差公式、完全平方公式)是因式分解的一种基本方法.如对于二次三项式a2+2ab+b2,可以逆用乘法公式将它分解成(a+b)2的形式,我们称a2+2ab+b2为完全平方式.但是对于一般的二次三项式,就不能直接应用完全平方了,我们可以在二次三项式中先加上一项,使其配成完全平方式,再减去这项,使整个式子的值不变,于是有:
    x2+2ax﹣3a2
    =x2+2ax+a2﹣a2﹣3a2
    =(x+a)2﹣(2a)2
    =(x+3a)(x﹣a)
    材料2.因式分解:(x+y)2+2(x+y)+1
    解:将“x+y”看成一个整体,令x+y=A,则
    原式=A2+2A+1=(A+1)2
    再将“A”还原,得:原式=(x+y+1)2.
    上述解题用到的是“整体思想”,整体思想是数学解题中常见的一种思想方法,请你解答下列问题:
    (1)根据材料1,把c2﹣6c+8分解因式;
    (2)结合材料1和材料2完成下面小题:
    ①分解因式:(a﹣b)2+2(a﹣b)+1;
    ②分解因式:(m+n)(m+n﹣4)+3.
    23.(12分)太原双塔寺又名永祚寺,是国家级文物保护单位,由于双塔(舍利塔、文峰塔)耸立,被人们称为“文笔双塔”,是太原的标志性建筑之一,某校社会实践小组为了测量舍利塔的高度,在地面上的C处垂直于地面竖立了高度为2米的标杆CD,这时地面上的点E,标杆的顶端点D,舍利塔的塔尖点B正好在同一直线上,测得EC=4米,将标杆CD向后平移到点C处,这时地面上的点F,标杆的顶端点H,舍利塔的塔尖点B正好在同一直线上(点F,点G,点E,点C与塔底处的点A在同一直线上),这时测得FG=6米,GC=53米.
    请你根据以上数据,计算舍利塔的高度AB.

    24.(14分)矩形ABCD中,DE平分∠ADC交BC边于点E,P为DE上的一点(PE<PD),PM⊥PD,PM交AD边于点M.
    (1)若点F是边CD上一点,满足PF⊥PN,且点N位于AD边上,如图1所示.
    求证:①PN=PF;②DF+DN=DP;
    (2)如图2所示,当点F在CD边的延长线上时,仍然满足PF⊥PN,此时点N位于DA边的延长线上,如图2所示;试问DF,DN,DP有怎样的数量关系,并加以证明.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、A
    【解析】
    由三视图的俯视图,从左到右依次找到最高层数,再由主视图和俯视图之间的关系可知,最高层高度即为主视图高度.
    【详解】
    解:几何体从左到右的最高层数依次为1,2,3,
    所以主视图从左到右的层数应该为1,2,3,
    故选A.
    【点睛】
    本题考查了三视图的简单性质,属于简单题,熟悉三视图的概念,主视图和俯视图之间的关系是解题关键.
    2、D
    【解析】
    首先可判断重叠部分为平行四边形,且两条纸条宽度相同;再由平行四边形的等积转换可得邻边相等,则四边形为菱形.所以根据菱形的性质进行判断.
    【详解】
    解:

    四边形是用两张等宽的纸条交叉重叠地放在一起而组成的图形,
    ,,
    四边形是平行四边形(对边相互平行的四边形是平行四边形);
    过点分别作,边上的高为,.则
    (两纸条相同,纸条宽度相同);
    平行四边形中,,即,
    ,即.故正确;
    平行四边形为菱形(邻边相等的平行四边形是菱形).
    ,(菱形的对角相等),故正确;
    ,(平行四边形的对边相等),故正确;
    如果四边形是矩形时,该等式成立.故不一定正确.
    故选:.
    【点睛】
    本题考查了菱形的判定与性质.注意:“邻边相等的平行四边形是菱形”,而非“邻边相等的四边形是菱形”.
    3、A
    【解析】
    有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可
    【详解】
    根据有理数比较大小的方法,可得
    ﹣4<﹣2<0<3
    ∴各数中,最小的数是﹣4
    故选:A
    【点睛】
    本题考查了有理数大小比较的方法,解题的关键要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小
    4、C
    【解析】
    先根据俯视图判断出几何体的形状,再根据主视图是从正面看画出图形即可.
    【详解】
    解:由俯视图可知,几何体共有两排,前面一排从左到右分别是1个和2个小正方体搭成两个长方体,
    后面一排分别有2个、3个、1个小正方体搭成三个长方体,
    并且这两排右齐,故从正面看到的视图为:

    故选:C.
    【点睛】
    本题考查几何体三视图,熟记三视图的概念并判断出物体的排列方式是解题的关键.
    5、B
    【解析】
    根据相反数的性质可得结果.
    【详解】
    因为-2+2=0,所以﹣2的相反数是2,
    故选B.
    【点睛】
    本题考查求相反数,熟记相反数的性质是解题的关键 .
    6、D
    【解析】
    由根与系数的关系得出x1+x2=5,x1•x2=2,将其代入x1+x2−x1•x2中即可得出结论.
    【详解】
    解:∵方程x2−5x+2=0的两个解分别为x1,x2,
    ∴x1+x2=5,x1•x2=2,
    ∴x1+x2−x1•x2=5−2=1.
    故选D.
    【点睛】
    本题考查了根与系数的关系,解题的关键是根据根与系数的关系得出x1+x2=5,x1•x2=2.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系得出两根之和与两根之积是关键.
    7、D
    【解析】
    主视图是从几何体的正面看,主视图是三角形的一定是一个锥体,是长方形的一定是柱体,由此分析可得答案.
    【详解】
    解:主视图是三角形的一定是一个锥体,只有D是锥体.
    故选D.
    【点睛】
    此题主要考查了几何体的三视图,主要考查同学们的空间想象能力.
    8、D
    【解析】
    根据锐角三角函数的定义,余弦是邻边比斜边,可得答案.
    【详解】
    cosα=.
    故选D.
    【点睛】
    熟悉掌握锐角三角函数的定义是关键.
    9、B
    【解析】
    根据一元二次方程的解的定义,把x=2代入得4-6+k=0,然后解关于k的方程即可.
    【详解】
    把x=2代入得,4-6+k=0,
    解得k=2.
    故答案为:B.
    【点睛】
    本题主要考查了一元二次方程的解,掌握一元二次方程的定义,把已知代入方程,列出关于k的新方程,通过解新方程来求k的值是解题的关键.
    10、B
    【解析】
    利用合并同类项对A进行判断;根据幂的乘方和同底数幂的除法对B进行判断;根据同底数幂的乘法法则对C进行判断;利用完全平方公式对D进行判断.
    【详解】
    解:A、a2与a3不能合并,所以A选项错误;
    B、原式=a6÷a6=1,所以A选项正确;
    C、原式=a5,所以C选项错误;
    D、原式=2+2+3=5+2,所以D选项错误.
    故选:B.
    【点睛】
    本题考查同底数幂的乘除、二次根式的混合运算,:二次根式的混合运算先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.解题关键是在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.

    二、填空题(共7小题,每小题3分,满分21分)
    11、3
    【解析】
    先把化成,然后再合并同类二次根式即可得解.
    【详解】
    原式=2.
    故答案为
    【点睛】
    本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行然后合并同类二次根式.
    12、4n﹣1
    【解析】
    分别数出图、图、图中的三角形的个数,可以发现:第几个图形中三角形的个数就是4与几的乘积减去如图中三角形的个数为按照这个规律即可求出第n各图形中有多少三角形.
    【详解】
    分别数出图、图、图中的三角形的个数,
    图中三角形的个数为;
    图中三角形的个数为;
    图中三角形的个数为;
    可以发现,第几个图形中三角形的个数就是4与几的乘积减去1.
    按照这个规律,如果设图形的个数为n,那么其中三角形的个数为.
    故答案为.
    【点睛】
    此题主要考查学生对图形变化类这个知识点的理解和掌握,解答此类题目的关键是根据题目中给出的图形,数据等条件,通过认真思考,归纳总结出规律,此类题目难度一般偏大,属于难题.
    13、13
    【解析】
    根据正方形的性质得出AD=AB,∠BAD=90°,根据垂直得出∠DEA=∠AFB=90°,求出∠EDA=∠FAB,根据AAS推出△AED≌△BFA,根据全等三角形的性质得出AE=BF=5,AF=DE=8,即可求出答案;
    【详解】
    ∵ABCD是正方形(已知),
    ∴AB=AD,∠ABC=∠BAD=90°;
    又∵∠FAB+∠FBA=∠FAB+∠EAD=90°,
    ∴∠FBA=∠EAD(等量代换);
    ∵BF⊥a于点F,DE⊥a于点E,
    ∴在Rt△AFB和Rt△AED中,
    ∵,
    ∴△AFB≌△AED(AAS),
    ∴AF=DE=8,BF=AE=5(全等三角形的对应边相等),
    ∴EF=AF+AE=DE+BF=8+5=13.
    故答案为13.
    点睛:本题考查了勾股定理,全等三角形的性质和判定,正方形的性质的应用,能求出△AED≌△BFA是解此题的关键.
    14、1
    【解析】
    本题是营销问题,基本等量关系:利润=每件利润×销售量,每件利润=每件售价﹣每件进价.再根据所列二次函数求最大值.
    【详解】
    解:设利润为w元,
    则w=(20﹣x)(x﹣10)=﹣(x﹣1)2+25,
    ∵10≤x≤20,
    ∴当x=1时,二次函数有最大值25,
    故答案是:1.
    【点睛】
    本题考查了二次函数的应用,此题为数学建模题,借助二次函数解决实际问题.
    15、A
    【解析】
    根据主视图和左视图可知该几何体是柱体,根据俯视图可知该几何体是竖立的三棱柱.
    【详解】
    根据主视图和左视图可知该几何体是柱体,根据俯视图可知该几何体是竖立的三棱柱.主视图中间的线是实线.
    故选A.
    【点睛】
    考查简单几何体的三视图,掌握常见几何体的三视图是解题的关键.
    16、125
    【解析】
    解:过O作OM⊥AB,ON⊥AC,OP⊥BC,垂足分别为M,N,P
    ∵∠A=70°,∠B+∠C=180∘−∠A=110°
    ∵O在△ABC三边上截得的弦长相等,
    ∴OM=ON=OP,
    ∴O是∠B,∠C平分线的交点
    ∴∠BOC=180°−12(∠B+∠C)=180°−12×110°=125°.

    故答案为:125°
    【点睛】
    本题考查了圆心角、弧、弦的关系, 三角形内角和定理, 角平分线的性质,解题的关键是掌握它们的性质和定理.
    17、8
    【解析】
    解:设边数为n,由题意得,
    180(n-2)=3603
    解得n=8.
    所以这个多边形的边数是8.

    三、解答题(共7小题,满分69分)
    18、(1)A(﹣1,﹣6);(1)见解析
    【解析】
    试题分析:(1)把每个坐标做大1倍,并去相反数.(1)横纵坐标对调,并且把横坐标取相反数.
    试题解析:
    解:(1)如图,△A1B1C1为所作,A(﹣1,﹣6);
    (1)如图,△A1B1C1为所作.

    19、 (1) A(﹣4,0),B(2,0);(2)△ACP最大面积是4.
    【解析】
    (1)令y=0,得到关于x 的一元二次方程﹣x2﹣x+4=0,解此方程即可求得结果;
    (2)先求出直线AC解析式,再作PD⊥AO交AC于D,设P(t,﹣t2﹣t+4),可表示出D点坐标,于是线段PD可用含t的代数式表示,所以S△ACP=PD×OA=PD×4=2PD,可得S△ACP关于t 的函数关系式,继而可求出△ACP面积的最大值.
    【详解】
    (1)解:设y=0,则0=﹣x2﹣x+4
    ∴x1=﹣4,x2=2
    ∴A(﹣4,0),B(2,0)
    (2)作PD⊥AO交AC于D

    设AC解析式y=kx+b

    解得:
    ∴AC解析式为y=x+4.
    设P(t,﹣t2﹣t+4)则D(t,t+4)
    ∴PD=(﹣t2﹣t+4)﹣(t+4)=﹣t2﹣2t=﹣(t+2)2+2
    ∴S△ACP=PD×4=﹣(t+2)2+4
    ∴当t=﹣2时,△ACP最大面积4.
    【点睛】
    本题考查二次函数综合,解题的关键是掌握待定系数法进行求解.
    20、(1)B,C;(2)2;(3)该校身高在165≤x<175之间的学生约有462人.
    【解析】
    根据直方图即可求得男生的众数和中位数,求得男生的总人数,就是女生的总人数,然后乘以对应的百分比即可求解.
    【详解】
    解:(1)∵直方图中,B组的人数为12,最多,
    ∴男生的身高的众数在B组,
    男生总人数为:4+12+10+8+6=40,
    按照从低到高的顺序,第20、21两人都在C组,
    ∴男生的身高的中位数在C组,
    故答案为B,C;
    (2)女生身高在E组的百分比为:1﹣17.5%﹣37.5%﹣25%﹣15%=5%,
    ∵抽取的样本中,男生、女生的人数相同,
    ∴样本中,女生身高在E组的人数有:40×5%=2(人),
    故答案为2;
    (3)600×+480×(25%+15%)=270+192=462(人).
    答:该校身高在165≤x<175之间的学生约有462人.
    【点睛】
    考查频数(率)分布直方图, 频数(率)分布表, 扇形统计图, 中位数, 众数,比较基础,掌握计算方法是解题的关键.
    21、(1)(2,﹣2);
    (2)(1,0);
    (3)1.

    【解析】
    试题分析:(1)根据平移的性质得出平移后的图从而得到点的坐标;
    (2)根据位似图形的性质得出对应点位置,从而得到点的坐标;
    (3)利用等腰直角三角形的性质得出△A2B2C2的面积.
    试题解析:(1)如图所示:C1(2,﹣2);
    故答案为(2,﹣2);
    (2)如图所示:C2(1,0);
    故答案为(1,0);
    (3)∵=20,=20,=40,
    ∴△A2B2C2是等腰直角三角形,
    ∴△A2B2C2的面积是:××=1平方单位.
    故答案为1.

    考点:1、平移变换;2、位似变换;3、勾股定理的逆定理
    22、(1)(c-4)(c-2);(2)①(a-b+1)2;②(m+n-1)(m+n-3).
    【解析】
    (1)根据材料1,可以对c2-6c+8分解因式;
    (2)①根据材料2的整体思想可以对(a-b)2+2(a-b)+1分解因式;
    ②根据材料1和材料2可以对(m+n)(m+n-4)+3分解因式.
    【详解】
    (1)c2-6c+8
    =c2-6c+32-32+8
    =(c-3)2-1
    =(c-3+1)(c-3+1)
    =(c-4)(c-2);
    (2)①(a-b)2+2(a-b)+1
    设a-b=t,
    则原式=t2+2t+1=(t+1)2,
    则(a-b)2+2(a-b)+1=(a-b+1)2;
    ②(m+n)(m+n-4)+3
    设m+n=t,
    则t(t-4)+3
    =t2-4t+3
    =t2-4t+22-22+3
    =(t-2)2-1
    =(t-2+1)(t-2-1)
    =(t-1)(t-3),
    则(m+n)(m+n-4)+3=(m+n-1)(m+n-3).
    【点睛】
    本题考查因式分解的应用,解题的关键是明确题意,可以根据材料中的例子对所求的式子进行因式分解.
    23、55米
    【解析】
    由题意可知△EDC∽△EBA,△FHC∽△FBA,根据相似三角形的性质可得,又DC=HG,可得,代入数据即可求得AC=106米,再由即可求得AB=55米.
    【详解】
    ∵△EDC∽△EBA,△FHC∽△FBA,



    即,
    ∴AC=106米,
    又 ,
    ∴,
    ∴AB=55米.
    答:舍利塔的高度AB为55米.
    【点睛】
    本题考查相似三角形的判定和性质的应用,解题的关键是灵活运用所学知识解决问题,利用相似三角形的性质建立方程解决问题.
    24、(1)①证明见解析;②证明见解析;(2),证明见解析.
    【解析】
    (1)①利用矩形的性质,结合已知条件可证△PMN≌△PDF,则可证得结论;
    ②由勾股定理可求得DM=DP,利用①可求得MN=DF,则可证得结论;
    (2)过点P作PM1⊥PD,PM1交AD边于点M1,则可证得△PM1N≌△PDF,则可证得M1N=DF,同(1)②的方法可证得结论.
    【详解】
    解:(1)①∵四边形ABCD是矩形,∴∠ADC=90°.
    又∵DE平分∠ADC,∴∠ADE=∠EDC=45°;
    ∵PM⊥PD,∠DMP=45°,
    ∴DP=MP.
    ∵PM⊥PD,PF⊥PN,
    ∴∠MPN+∠NPD=∠NPD+∠DPF=90°,∴∠MPN=∠DPF.
    在△PMN和△PDF中, ,
    ∴△PMN≌△PDF(ASA),
    ∴PN=PF,MN=DF;
    ②∵PM⊥PD,DP=MP,∴DM2=DP2+MP2=2DP2,∴DM=DP.
    ∵又∵DM=DN+MN,且由①可得MN=DF,∴DM=DN+DF,∴DF+DN=DP;
    (2).理由如下:
    过点P作PM1⊥PD,PM1交AD边于点M1,如图,
    ∵四边形ABCD是矩形,∴∠ADC=90°.
    又∵DE平分∠ADC,∴∠ADE=∠EDC=45°;
    ∵PM1⊥PD,∠DM1P=45°,∴DP=M1P,
    ∴∠PDF=∠PM1N=135°,同(1)可知∠M1PN=∠DPF.
    在△PM1N和△PDF中,
    ∴△PM1N≌△PDF(ASA),∴M1N=DF,
    由勾股定理可得:=DP2+M1P2=2DP2,∴DM1DP.
    ∵DM1=DN﹣M1N,M1N=DF,∴DM1=DN﹣DF,
    ∴DN﹣DF=DP.

    【点睛】
    本题为四边形的综合应用,涉及矩形的性质、等腰直角三角形的性质、全等三角形的判定和性质、勾股定理等知识.在每个问题中,构造全等三角形是解题的关键,注意勾股定理的应用.本题考查了知识点较多,综合性较强,难度适中.

    相关试卷

    山东省菏泽市名校2021-2022学年中考试题猜想数学试卷含解析:

    这是一份山东省菏泽市名校2021-2022学年中考试题猜想数学试卷含解析,共23页。

    山东省菏泽市定陶县重点达标名校2021-2022学年中考猜题数学试卷含解析:

    这是一份山东省菏泽市定陶县重点达标名校2021-2022学年中考猜题数学试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,下列方程中,没有实数根的是,二次函数y=3,《九章算术》中有这样一个问题等内容,欢迎下载使用。

    山东省荷泽市定陶县重点名校2021-2022学年中考联考数学试卷含解析:

    这是一份山东省荷泽市定陶县重点名校2021-2022学年中考联考数学试卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,已知二次函数y=等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map