山东省济南市市中区2021-2022学年中考二模数学试题含解析
展开
这是一份山东省济南市市中区2021-2022学年中考二模数学试题含解析,共20页。试卷主要包含了下列实数中,结果最大的是,在平面直角坐标系中,已知点A等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.等腰三角形的两边长分别为5和11,则它的周长为( )
A.21 B.21或27 C.27 D.25
2.已知抛物线y=ax2+bx+c与x轴交于点A和点B,顶点为P,若△ABP组成的三角形恰为等腰直角三角形,则b2﹣4ac的值为( )
A.1 B.4 C.8 D.12
3.点A(4,3)经过某种图形变化后得到点B(-3,4),这种图形变化可以是( )
A.关于x轴对称 B.关于y轴对称
C.绕原点逆时针旋转 D.绕原点顺时针旋转
4.下列四张印有汽车品牌标志图案的卡片中,是中心对称图形的卡片是( )
A. B. C. D.
5.如图由四个相同的小立方体组成的立体图像,它的主视图是( ).
A. B. C. D.
6.下列实数中,结果最大的是( )
A.|﹣3| B.﹣(﹣π) C. D.3
7.如图,O为坐标原点,四边彤OACB是菱形,OB在x轴的正半轴上,sin∠AOB=,反比例函数在第一象限内的图象经过点A,与BC交于点F,删△AOF的面积等于( )
A.10 B.9 C.8 D.6
8.若抛物线y=x2-(m-3)x-m能与x轴交,则两交点间的距离最值是( )
A.最大值2, B.最小值2 C.最大值2 D.最小值2
9.在平面直角坐标系中,已知点A(﹣4,2),B(﹣6,﹣4),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是( )
A.(﹣2,1) B.(﹣8,4)
C.(﹣8,4)或(8,﹣4) D.(﹣2,1)或(2,﹣1)
10.如图,将矩形 ABCD 绕点 A 顺时针旋转到矩形 AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是( )
A.68° B.20° C.28° D.22°
11.如图,BC⊥AE于点C,CD∥AB,∠B=55°,则∠1等于( )
A.35° B.45° C.55° D.25°
12.下列四个命题,正确的有( )个.
①有理数与无理数之和是有理数
②有理数与无理数之和是无理数
③无理数与无理数之和是无理数
④无理数与无理数之积是无理数.
A.1 B.2 C.3 D.4
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.若函数y=mx2+2x+1的图象与x轴只有一个公共点,则常数m的值是 .
14.某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,则旅客可携带的免费行李的最大质量为 kg
15.如图,已知一块圆心角为270°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),圆锥底面圆的直径是60cm,则这块扇形铁皮的半径是_____cm.
16.中国人最先使用负数,魏晋时期的数学家刘徽在“正负术”的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数.如图,根据刘徽的这种表示法,观察图①,可推算图②中所得的数值为_____.
17.有下列各式:①;②;③;④.其中,计算结果为分式的是_____.(填序号)
18.当a=3时,代数式的值是______.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.
(1)求商场经营该商品原来一天可获利润多少元?
(2)设后来该商品每件降价x元,商场一天可获利润y元.
①若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?
②求出y与x之间的函数关系式,并通过画该函数图象的草图,观察其图象的变化趋势,结合题意写出当x取何值时,商场获利润不少于2160元.
20.(6分)某县教育局为了丰富初中学生的大课间活动,要求各学校开展形式多样的阳光体育活动.某中学就“学生体育活动兴趣爱好”的问题,随机调查了本校某班的学生,并根据调查结果绘制成如下的不完整的扇形统计图和条形统计图:
(1)在这次调查中,喜欢篮球项目的同学有______人,在扇形统计图中,“乒乓球”的百分比为______%,如果学校有800名学生,估计全校学生中有______人喜欢篮球项目.
(2)请将条形统计图补充完整.
(3)在被调查的学生中,喜欢篮球的有2名女同学,其余为男同学.现要从中随机抽取2名同学代表班级参加校篮球队,请直接写出所抽取的2名同学恰好是1名女同学和1名男同学的概率.
21.(6分)某校运动会需购买A、B两种奖品,若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.
(1)求A、B两种奖品的单价各是多少元?
(2)学校计划购买A、B两种奖品共100件,且A种奖品的数量不大于B种奖品数量的3倍,设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式.请您确定当购买A种奖品多少件时,费用W的值最少.
22.(8分)如图,已知∠AOB=45°,AB⊥OB,OB=1.
(1)利用尺规作图:过点M作直线MN∥OB交AB于点N(不写作法,保留作图痕迹);
(1)若M为AO的中点,求AM的长.
23.(8分)如图,一次函数y=kx+b的图象与反比例函数y=的图象交于A(﹣2,1),B(1,n)两点.
求反比例函数和一次函数的解析式;根据图象写出一次函数的值大于反比例函数的值的x的取值范围.
24.(10分)如图,抛物线y=-x2+bx+c与x轴交于A、B两点,且B点的坐标为(3,0),经过A点的直线交抛物线于点D (2, 3).求抛物线的解析式和直线AD的解析式;过x轴上的点E (a,0) 作直线EF∥AD,交抛物线于点F,是否存在实数a,使得以A、D、E、F为顶点的四边形是平行四边形?如果存在,求出满足条件的a;如果不存在,请说明理由.
25.(10分)如图,在△ABC中,点D,E分别在边AB,AC上,且BE平分∠ABC,∠ABE=∠ACD,BE,CD交于点F.
(1)求证:;
(2)请探究线段DE,CE的数量关系,并说明理由;
(3)若CD⊥AB,AD=2,BD=3,求线段EF的长.
26.(12分)先化简后求值:已知:x=﹣2,求的值.
27.(12分)甲乙两件服装的进价共500元,商场决定将甲服装按30%的利润定价,乙服装按20%的利润定价,实际出售时,两件服装均按9折出售,商场卖出这两件服装共获利67元.求甲乙两件服装的进价各是多少元;由于乙服装畅销,制衣厂经过两次上调价格后,使乙服装每件的进价达到242元,求每件乙服装进价的平均增长率;若每件乙服装进价按平均增长率再次上调,商场仍按9折出售,定价至少为多少元时,乙服装才可获得利润(定价取整数).
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】
试题分析:分类讨论:当腰取5,则底边为11,但5+5<11,不符合三角形三边的关系;当腰取11,则底边为5,根据等腰三角形的性质得到另外一边为11,然后计算周长.
解:当腰取5,则底边为11,但5+5<11,不符合三角形三边的关系,所以这种情况不存在;
当腰取11,则底边为5,则三角形的周长=11+11+5=1.
故选C.
考点:等腰三角形的性质;三角形三边关系.
2、B
【解析】
设抛物线与x轴的两交点A、B坐标分别为(x1,0),(x2,0),利用二次函数的性质得到P(-,),利用x1、x2为方程ax2+bx+c=0的两根得到x1+x2=-,x1•x2=,则利用完全平方公式变形得到AB=|x1-x2|= ,接着根据等腰直角三角形的性质得到||=•,然后进行化简可得到b2-1ac的值.
【详解】
设抛物线与x轴的两交点A、B坐标分别为(x1,0),(x2,0),顶点P的坐标为(-,),
则x1、x2为方程ax2+bx+c=0的两根,
∴x1+x2=-,x1•x2=,
∴AB=|x1-x2|====,
∵△ABP组成的三角形恰为等腰直角三角形,
∴||=•,
=,
∴b2-1ac=1.
故选B.
【点睛】
本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质和等腰直角三角形的性质.
3、C
【解析】
分析:根据旋转的定义得到即可.
详解:因为点A(4,3)经过某种图形变化后得到点B(-3,4),
所以点A绕原点逆时针旋转90°得到点B,
故选C.
点睛:本题考查了旋转的性质:旋转前后两个图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段的夹角等于旋转角.
4、C
【解析】
试题分析:由中心对称图形的概念可知,这四个图形中只有第三个是中心对称图形,故答案选C.
考点:中心对称图形的概念.
5、D
【解析】
从正面看,共2列,左边是1个正方形,
右边是2个正方形,且下齐.
故选D.
6、B
【解析】
正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.
【详解】
根据实数比较大小的方法,可得
相关试卷
这是一份2023年山东省济南市市中区育英中学中考数学三模试卷(含解析),共27页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
这是一份2023年山东省济南市市中区中考数学二模试卷(含解析),共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年山东省济南市市中区中考二模数学试题(含答案),共14页。