年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    山东省济南天桥区四校联考2022年中考试题猜想数学试卷含解析

    山东省济南天桥区四校联考2022年中考试题猜想数学试卷含解析第1页
    山东省济南天桥区四校联考2022年中考试题猜想数学试卷含解析第2页
    山东省济南天桥区四校联考2022年中考试题猜想数学试卷含解析第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    山东省济南天桥区四校联考2022年中考试题猜想数学试卷含解析

    展开

    这是一份山东省济南天桥区四校联考2022年中考试题猜想数学试卷含解析,共23页。试卷主要包含了若一个正比例函数的图象经过A等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    请考生注意:
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.用半径为8的半圆围成一个圆锥的侧面,则圆锥的底面半径等于(  )
    A.4 B.6 C.16π D.8
    2.如图,在平面直角坐标系xOy中,菱形AOBC的一个顶点O在坐标原点,一边OB在x轴的正半轴上,sin∠AOB=,反比例函数y=在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于( )

    A.30 B.40 C.60 D.80
    3.若一个正比例函数的图象经过A(3,﹣6),B(m,﹣4)两点,则m的值为( )
    A.2 B.8 C.﹣2 D.﹣8
    4.如图,在矩形ABCD中,AD=1,AB>1,AG平分∠BAD,分别过点B,C作BE⊥AG 于点E,CF⊥AG于点F,则AE-GF的值为( )

    A.1 B. C. D.
    5.如果零上2℃记作+2℃,那么零下3℃记作( )
    A.-3℃ B.-2℃ C.+3℃ D.+2℃
    6.如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为(  )

    A.30° B.45°
    C.90° D.135°
    7.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是( )
    A.2×1000(26﹣x)=800x B.1000(13﹣x)=800x
    C.1000(26﹣x)=2×800x D.1000(26﹣x)=800x
    8.如图,BD为⊙O的直径,点A为弧BDC的中点,∠ABD=35°,则∠DBC=(  )

    A.20° B.35° C.15° D.45°
    9.如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=,则四边形MABN的面积是( )

    A. B. C. D.
    10.如图,在底边BC为2,腰AB为2的等腰三角形ABC中,DE垂直平分AB于点D,交BC于点E,则△ACE的周长为( )

    A.2+ B.2+2 C.4 D.3
    11.将弧长为2πcm、圆心角为120°的扇形围成一个圆锥的侧面,则这个圆锥的高是(  )
    A. cm B.2 cm C.2cm D. cm
    12.已知二次函数(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程的两实数根是
    A.x1=1,x2=-1 B.x1=1,x2=2
    C.x1=1,x2=0 D.x1=1,x2=3
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.若一个多边形每个内角为140°,则这个多边形的边数是________.
    14.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交AC于E,交BC的延长线于F,若∠F=30°,DE=1,则BE的长是 .

    15.如图,“人字梯”放在水平的地面上,当梯子的一边与地面所夹的锐角为时,两梯角之间的距离BC的长为周日亮亮帮助妈妈整理换季衣服,先使为,后又调整为,则梯子顶端离地面的高度AD下降了______结果保留根号.

    16.当关于x的一元二次方程ax2+bx+c=0有实数根,且其中一个根为另一个根的2倍时,称之为“倍根方程”.如果关于x的一元二次方程x2+(m﹣2)x﹣2m=0是“倍根方程”,那么m的值为_____.
    17.有一个正六面体,六个面上分别写有1~6这6个整数,投掷这个正六面体一次,向上一面的数字是2的倍数或3的倍数的概率是____.
    18.内接于圆,设,圆的半径为,则所对的劣弧长为_____(用含的代数式表示).
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)某年级组织学生参加夏令营活动,本次夏令营分为甲、乙、丙三组进行活动.下面两幅统计图反映了学生报名参加夏令营的情况,请你根据图中的信息回答下列问题:
    该年级报名参加丙组的人数为 ;该年级报名参加本次活动的总人数 ,并补全频数分布直方图;根据实际情况,需从甲组抽调部分同学到丙组,使丙组人数是甲组人数的3倍,应从甲组抽调多少名学生到丙组?
    20.(6分)先化简,再求值:,其中,a、b满足.
    21.(6分)如图,已知点A(﹣2,0),B(4,0),C(0,3),以D为顶点的抛物线y=ax2+bx+c过A,B,C三点.
    (1)求抛物线的解析式及顶点D的坐标;
    (2)设抛物线的对称轴DE交线段BC于点E,P为第一象限内抛物线上一点,过点P作x轴的垂线,交线段BC于点F,若四边形DEFP为平行四边形,求点P的坐标.

    22.(8分)如图,已知二次函数与x轴交于A、B两点,A在B左侧,点C是点A下方,且AC⊥x轴.
    (1)已知A(-3,0),B(-1,0),AC=OA.
    ①求抛物线解析式和直线OC的解析式;
    ②点P从O出发,以每秒2个单位的速度沿x轴负半轴方向运动,Q从O出发,以每秒个单位的速度沿OC方向运动,运动时间为t.直线PQ与抛物线的一个交点记为M,当2PM=QM时,求t的值(直接写出结果,不需要写过程)
    (2)过C作直线EF与抛物线交于E、F两点(E、F在x轴下方),过E作EG⊥x轴于G,连CG,BF,求证:CG∥BF

    23.(8分)(1)计算:sin45°
    (2)解不等式组:
    24.(10分)某制衣厂某车间计划用10天加工一批出口童装和成人装共360件,该车间的加工能力是:每天能单独加工童装45件或成人装30件.
    (1)该车间应安排几天加工童装,几天加工成人装,才能如期完成任务;
    (2)若加工童装一件可获利80元, 加工成人装一件可获利120元, 那么该车间加工完这批服装后,共可获利多少元.
    25.(10分)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.第一批饮料进货单价多少元?若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?
    26.(12分)九(3)班“2017年新年联欢会”中,有一个摸奖游戏,规则如下:有4张纸牌,背面都是喜羊羊头像,正面有2张笑脸、2张哭脸.现将4张纸牌洗匀后背面朝上摆放到桌上,然后让同学去翻纸牌.
    (1)现小芳有一次翻牌机会,若正面是笑脸的就获奖,正面是哭脸的不获奖.她从中随机翻开一张纸牌,求小芳获奖的概率.
    (2)如果小芳、小明都有翻两张牌的机会.小芳先翻一张,放回后再翻一张;小明同时翻开两张纸牌.他们翻开的两张纸牌中只要出现一张笑脸就获奖.他们获奖的机会相等吗?通过树状图分析说明理由.
    27.(12分)如图,足球场上守门员在处开出一高球,球从离地面1米的处飞出(在轴上),运动员乙在距点6米的处发现球在自己头的正上方达到最高点,距地面约4米高,球落地后又一次弹起.据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.
    求足球开始飞出到第一次落地时,该抛物线的表达式.足球第一次落地点距守门员多少米?(取)运动员乙要抢到第二个落点,他应再向前跑多少米?



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、A
    【解析】
    由于半圆的弧长=圆锥的底面周长,那么圆锥的底面周长为8π,底面半径=8π÷2π.
    【详解】
    解:由题意知:底面周长=8π,
    ∴底面半径=8π÷2π=1.
    故选A.
    【点睛】
    此题主要考查了圆锥侧面展开扇形与底面圆之间的关系,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长,解决本题的关键是应用半圆的弧长=圆锥的底面周长.
    2、B
    【解析】
    过点A作AM⊥x轴于点M,设OA=a,通过解直角三角形找出点A的坐标,结合反比例函数图象上点的坐标特征即可求出a的值,再根据四边形OACB是菱形、点F在边BC上,即可得出S△AOF=S菱形OBCA,结合菱形的面积公式即可得出结论.
    【详解】
    过点A作AM⊥x轴于点M,如图所示.

    设OA=a,
    在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=,
    ∴AM=OA•sin∠AOB=a,OM==a,
    ∴点A的坐标为(a,a).
    ∵点A在反比例函数y=的图象上,
    ∴a•a=a2=48,
    解得:a=1,或a=-1(舍去).
    ∴AM=8,OM=6,OB=OA=1.
    ∵四边形OACB是菱形,点F在边BC上,
    ∴S△AOF=S菱形OBCA=OB•AM=2.
    故选B.
    【点睛】
    本题考查了菱形的性质、解直角三角形以及反比例函数图象上点的坐标特征,解题的关键是找出S△AOF=S菱形OBCA.
    3、A
    【解析】
    试题分析:设正比例函数解析式为:y=kx,将点A(3,﹣6)代入可得:3k=﹣6,解得:k=﹣2,∴函数解析式为:y=﹣2x,将B(m,﹣4)代入可得:﹣2m=﹣4,解得m=2,故选A.
    考点:一次函数图象上点的坐标特征.
    4、D
    【解析】
    设AE=x,则AB=x,由矩形的性质得出∠BAD=∠D=90°,CD=AB,证明△ADG是等腰直角三角形,得出AG=AD=,同理得出CD=AB=x,CG=CD-DG=x -1,CG=GF,得出GF,即可得出结果.
    【详解】
    设AE=x,
    ∵四边形ABCD是矩形,
    ∴∠BAD=∠D=90°,CD=AB,
    ∵AG平分∠BAD,
    ∴∠DAG=45°,
    ∴△ADG是等腰直角三角形,
    ∴DG=AD=1,
    ∴AG=AD=,
    同理:BE=AE=x, CD=AB=x,
    ∴CG=CD-DG=x -1,
    同理: CG=GF,
    ∴FG= ,
    ∴AE-GF=x-(x-)=.
    故选D.
    【点睛】
    本题考查了矩形的性质、等腰直角三角形的判定与性质,勾股定理;熟练掌握矩形的性质和等腰直角三角形的性质,并能进行推理计算是解决问题的关键.
    5、A
    【解析】
    一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.
    【详解】
    ∵“正”和“负”相对,∴如果零上2℃记作+2℃,那么零下3℃记作-3℃.
    故选A.
    6、C
    【解析】
    根据勾股定理求解.
    【详解】
    设小方格的边长为1,得,
    OC=
    ,AO=
    ,AC=4,
    ∵OC2+AO2==16,
    AC2=42=16,
    ∴△AOC是直角三角形,
    ∴∠AOC=90°.
    故选C.
    【点睛】
    考点:勾股定理逆定理.
    7、C
    【解析】
    试题分析:此题等量关系为:2×螺钉总数=螺母总数.据此设未知数列出方程即可
    【详解】
    .故选C.
    解:设安排x名工人生产螺钉,则(26-x)人生产螺母,由题意得
    1000(26-x)=2×800x,故C答案正确,考点:一元一次方程.
    8、A
    【解析】
    根据∠ABD=35°就可以求出的度数,再根据,可以求出 ,因此就可以求得的度数,从而求得∠DBC
    【详解】
    解:∵∠ABD=35°,
    ∴的度数都是70°,
    ∵BD为直径,
    ∴的度数是180°﹣70°=110°,
    ∵点A为弧BDC的中点,
    ∴的度数也是110°,
    ∴的度数是110°+110°﹣180°=40°,
    ∴∠DBC==20°,
    故选:A.
    【点睛】
    本题考查了等腰三角形性质、圆周角定理,主要考查学生的推理能力.
    9、C
    【解析】
    连接CD,交MN于E,
    ∵将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,
    ∴MN⊥CD,且CE=DE.∴CD=2CE.
    ∵MN∥AB,∴CD⊥AB.∴△CMN∽△CAB.
    ∴.
    ∵在△CMN中,∠C=90°,MC=6,NC=,∴
    ∴.
    ∴.故选C.
    10、B
    【解析】
    分析:根据线段垂直平分线的性质,把三角形的周长问题转化为线段和的问题解决即可.
    详解:∵DE垂直平分AB,
    ∴BE=AE,
    ∴AE+CE=BC=2,
    ∴△ACE的周长=AC+AE+CE=AC+BC=2+2,
    故选B.
    点睛:本题考查了等腰三角形性质和线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.
    11、B
    【解析】
    由弧长公式可求解圆锥母线长,再由弧长可求解圆锥底面半径长,再运用勾股定理即可求解圆锥的高.
    【详解】
    解:设圆锥母线长为Rcm,则2π=,解得R=3cm;设圆锥底面半径为rcm,则2π=2πr,解得r=1cm.由勾股定理可得圆锥的高为=2cm.
    故选择B.
    【点睛】
    本题考查了圆锥的概念和弧长的计算.
    12、B
    【解析】
    试题分析:∵二次函数(m为常数)的图象与x轴的一个交点为(1,0),
    ∴.∴.故选B.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、九
    【解析】
    根据多边形的内角和定理:180°•(n-2)进行求解即可.
    【详解】
    由题意可得:180°×(n−2)=140°×n,
    解得n=9,
    故多边形是九边形.
    故答案为9.
    【点睛】
    本题考查了多边形的内角和定理,解题的关键是熟练的掌握多边形的内角和定理.
    14、2
    【解析】
    ∵∠ACB=90°,FD⊥AB,∴∠ACB=∠FDB=90°。
    ∵∠F=30°,∴∠A=∠F=30°(同角的余角相等)。
    又AB的垂直平分线DE交AC于E,∴∠EBA=∠A=30°。
    ∴Rt△DBE中,BE=2DE=2。
    15、
    【解析】
    根据题意画出图形,进而利用锐角三角函数关系得出答案.
    【详解】
    解:如图1所示:
    过点A作于点D,
    由题意可得:,
    则是等边三角形,
    故BC,
    则,

    如图2所示:
    过点A作于点E,
    由题意可得:,
    则是等腰直角三角形,,
    则,
    故梯子顶端离地面的高度AD下降了
    故答案为:.
    【点睛】
    此题主要考查了解直角三角形的应用,正确画出图形利用锐角三角三角函数关系分析是解题关键.
    16、-1或-4
    【解析】
    分析:
    设“倍根方程”的一个根为,则另一根为,由一元二次方程根与系数的关系可得,由此可列出关于m的方程,解方程即可求得m的值.
    详解:
    由题意设“倍根方程”的一个根为,另一根为,则由一元二次方程根与系数的关系可得:

    ∴,
    ∴,
    化简整理得:,解得 .
    故答案为:-1或-4.
    点睛:本题解题的关键是熟悉一元二次方程根与系数的关系:若一元二次方程的两根分别为,则.
    17、
    【解析】
    ∵投掷这个正六面体一次,向上的一面有6种情况,向上一面的数字是2的倍数或3的倍数的有2、3、4、6共4种情况,
    ∴其概率是=.
    【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
    18、或
    【解析】
    分0°<x°≤90°、90°<x°≤180°两种情况,根据圆周角定理求出∠DOC,根据弧长公式计算即可.
    【详解】
    解:当0°<x°≤90°时,如图所示:连接OC,

    由圆周角定理得,∠BOC=2∠A=2x°,
    ∴∠DOC=180°-2x°,
    ∴∠OBC所对的劣弧长=,
    当90°<x°≤180°时,同理可得,∠OBC所对的劣弧长= .
    故答案为:或.
    【点睛】
    本题考查了三角形的外接圆与外心、弧长的计算,掌握弧长公式、圆周角定理是解题的关键.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)21人;(2)10人,见解析(3)应从甲抽调1名学生到丙组
    【解析】
    (1)参加丙组的人数为21人;
    (2)21÷10%=10人,则乙组人数=10-21-11=10人,
    如图:

    (3)设需从甲组抽调x名同学到丙组,
    根据题意得:3(11-x)=21+x
    解得x=1.
    答:应从甲抽调1名学生到丙组
    (1)直接根据条形统计图获得数据;
    (2)根据丙组的21人占总体的10%,即可计算总体人数,然后计算乙组的人数,补全统计图;
    (3)设需从甲组抽调x名同学到丙组,根据丙组人数是甲组人数的3倍列方程求解
    20、
    【解析】
    先根据分式混合运算顺序和运算法则化简原式,再解方程组求得a、b的值,继而代入计算可得.
    【详解】
    原式=,
    =,
    =,
    解方程组得,
    所以原式=.
    【点睛】
    本题主要考查分式的化简求值和解二元一次方程组,解题的关键是熟练掌握分式混合运算顺序和运算法则.
    21、(1)y=﹣x2+x+3;D(1,);(2)P(3,).
    【解析】
    (1)设抛物线的解析式为y=a(x+2)(x-4),将点C(0,3)代入可求得a的值,将a的值代入可求得抛物线的解析式,配方可得顶点D的坐标;
    (2)画图,先根据点B和C的坐标确定直线BC的解析式,设P(m,-m2+m+3),则F(m,-m+3),表示PF的长,根据四边形DEFP为平行四边形,由DE=PF列方程可得m的值,从而得P的坐标.
    【详解】
    解:(1)设抛物线的解析式为y=a(x+2)(x﹣4),
    将点C(0,3)代入得:﹣8a=3,
    解得:a=﹣,
    y=﹣x2+x+3=﹣(x﹣1)2+,
    ∴抛物线的解析式为y=﹣x2+x+3,且顶点D(1,);
    (2)∵B(4,0),C(0,3),
    ∴BC的解析式为:y=﹣x+3,
    ∵D(1,),
    当x=1时,y=﹣+3=,
    ∴E(1,),
    ∴DE=-=,
    设P(m,﹣m2+m+3),则F(m,﹣m+3),
    ∵四边形DEFP是平行四边形,且DE∥FP,
    ∴DE=FP,
    即(﹣m2+m+3)﹣(﹣m+3)=,
    解得:m1=1(舍),m2=3,
    ∴P(3,).

    【点睛】
    本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数和二次函数的解析式,利用方程思想列等式求点的坐标,难度适中.
    22、 (1)①y=-x2-4x-3;y=x;②t= 或;(2)证明见解析.
    【解析】
    (1)把A(-3,0),B(-1,0)代入二次函数解析式即可求出;由AC=OA知C点坐标为(-3,-3),故可求出直线OC的解析式;②由题意得OP=2t,P(-2t,0),过Q作QH⊥x轴于H,
    得OH=HQ=t,可得Q(-t,-t),直线 PQ为y=-x-2t,过M作MG⊥x轴于G,由,则2PG=GH,由,得, 于是,解得,从而求出M(-3t,t)或M(),再分情况计算即可; (2) 过F作FH⊥x轴于H,想办法证得tan∠CAG=tan∠FBH,即∠CAG=∠FBH,即得证.
    【详解】

    解:(1)①把A(-3,0),B(-1,0)代入二次函数解析式得解得
    ∴y=-x2-4x-3;
    由AC=OA知C点坐标为(-3,-3),∴直线OC的解析式y=x;
    ②OP=2t,P(-2t,0),过Q作QH⊥x轴于H,
    ∵QO=,∴OH=HQ=t,
    ∴Q(-t,-t),∴PQ:y=-x-2t,
    过M作MG⊥x轴于G,
    ∴,
    ∴2PG=GH
    ∴,即,
    ∴ ,
    ∴,
    ∴M(-3t,t)或M()
    当M(-3t,t)时:,

    当M()时:,

    综上:或
    (2)设A(m,0)、B(n,0),
    ∴m、n为方程x2-bx-c=0的两根,
    ∴m+n=b,mn=-c,
    ∴y=-x2+(m+n)x-mn=-(x-m)(x-n),
    ∵E、F在抛物线上,设、,
    设EF:y=kx+b,
    ∴ ,


    ∴,令x=m


    ∴AC=,
    又∵,
    ∴tan∠CAG=,
    另一方面:过F作FH⊥x轴于H,
    ∴,,
    ∴tan∠FBH=
    ∴tan∠CAG=tan∠FBH
    ∴∠CAG=∠FBH
    ∴CG∥BF

    【点睛】
    此题主要考查二次函数的综合问题,解题的关键是熟知相似三角形的判定与性质及正确作出辅助线进行求解.
    23、(1);(2)﹣2<x≤1.
    【解析】
    (1)根据绝对值、特殊角的三角函数值可以解答本题;
    (2)根据解一元一次不等式组的方法可以解答本题.
    【详解】
    (1)sin45°
    =3-+×-5+×
    =3-+3-5+1
    =7--5;
    (2)(2)
    由不等式①,得
    x>-2,
    由不等式②,得
    x≤1,
    故原不等式组的解集是-2<x≤1.
    【点睛】
    本题考查解一元一次不等式组、实数的运算、特殊角的三角函数值,解答本题的关键是明确解它们各自的解答方法.
    24、 (1) 该车间应安排4天加工童装,6天加工成人装;(2) 36000元.
    【解析】
    (1)利用某车间计划用10天加工一批出口童装和成人装共360件,分别得出方程组成方程组求出即可;
    (2)利用(1)中所求,分别得出两种服装获利即可得出答案.
    【详解】
    解:(1)设该车间应安排x天加工童装,y天加工成人装,由题意得:

    解得:,
    答:该车间应安排4天加工童装,6天加工成人装;
    (2)∵45×4=180,30×6=180,
    ∴180×80+180×120=180×(80+120)=36000(元),
    答:该车间加工完这批服装后,共可获利36000元.
    【点睛】
    本题考查二元一次方程组的应用.
    25、(1)第一批饮料进货单价为8元.(2) 销售单价至少为11元.
    【解析】
    【分析】(1)设第一批饮料进货单价为元,根据等量关系第二批饮料的数量是第一批的3倍,列方程进行求解即可;
    (2)设销售单价为元,根据两批全部售完后,获利不少于1200元,列不等式进行求解即可得.
    【详解】(1)设第一批饮料进货单价为元,则:
    解得:
    经检验:是分式方程的解
    答:第一批饮料进货单价为8元.
    (2)设销售单价为元,则:

    化简得:,
    解得:,
    答:销售单价至少为11元.
    【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找出等量关系与不等关系是关键.
    26、(1);(2)他们获奖机会不相等,理由见解析.
    【解析】
    (1)根据正面有2张笑脸、2张哭脸,直接利用概率公式求解即可求得答案;(2)根据题意分别列出表格,然后由表格即可求得所有等可能的结果与获奖的情况,再利用概率公式求解即可求得他们获奖的概率.
    【详解】
    (1)∵有4张纸牌,背面都是喜羊羊头像,正面有2张笑脸、2张哭脸,翻一次牌正面是笑脸的就获奖,正面是哭脸的不获奖,
    ∴获奖的概率是;
    故答案为;
    (2)他们获奖机会不相等,理由如下:
    小芳:

    笑1
    笑2
    哭1
    哭2
    笑1
    笑1,笑1
    笑2,笑1
    哭1,笑1
    哭2,笑1
    笑2
    笑1,笑2
    笑2,笑2
    哭1,笑2
    哭2,笑2
    哭1
    笑1,哭1
    笑2,哭1
    哭1,哭1
    哭2,哭1
    哭2
    笑1,哭2
    笑2,哭2
    哭1,哭2
    哭2,哭2
    ∵共有16种等可能的结果,翻开的两张纸牌中只要出现笑脸的有12种情况,
    ∴P(小芳获奖)=;
    小明:

    笑1
    笑2
    哭1
    哭2
    笑1

    笑2,笑1
    哭1,笑1
    哭2,笑1
    笑2
    笑1,笑2

    哭1,笑2
    哭2,笑2
    哭1
    笑1,哭1
    笑2,哭1

    哭2,哭1
    哭2
    笑1,哭2
    笑2,哭2
    哭1,哭2

    ∵共有12种等可能的结果,翻开的两张纸牌中只要出现笑脸的有10种情况,
    ∴P(小明获奖)=,
    ∵P(小芳获奖)≠P(小明获奖),
    ∴他们获奖的机会不相等.
    【点睛】
    本题考查了列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.
    27、(1)(或)(2)足球第一次落地距守门员约13米.(3)他应再向前跑17米.
    【解析】
    (1)依题意代入x的值可得抛物线的表达式.
    (2)令y=0可求出x的两个值,再按实际情况筛选.
    (3)本题有多种解法.如图可得第二次足球弹出后的距离为CD,相当于将抛物线AEMFC向下平移了2个单位可得解得x的值即可知道CD、BD.
    【详解】
    解:(1)如图,设第一次落地时,
    抛物线的表达式为
    由已知:当时 

    表达式为(或)

    (2)令
    (舍去).
    足球第一次落地距守门员约13米.
    (3)解法一:如图,第二次足球弹出后的距离为
    根据题意:(即相当于将抛物线向下平移了2个单位)
    解得

    (米).
    答:他应再向前跑17米.

    相关试卷

    2022-2023学年山东省济南市天桥区四校联考七年级(下)期中数学试卷(含解析):

    这是一份2022-2023学年山东省济南市天桥区四校联考七年级(下)期中数学试卷(含解析),共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    四川省达州达川区四校联考2021-2022学年中考试题猜想数学试卷含解析:

    这是一份四川省达州达川区四校联考2021-2022学年中考试题猜想数学试卷含解析,共17页。试卷主要包含了考生必须保证答题卡的整洁,下列说法正确的是等内容,欢迎下载使用。

    山东省济宁嘉祥县联考2022年中考试题猜想数学试卷含解析:

    这是一份山东省济宁嘉祥县联考2022年中考试题猜想数学试卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,一元一次不等式2等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map