


山东省济宁市市中区达标名校2021-2022学年毕业升学考试模拟卷数学卷含解析
展开
这是一份山东省济宁市市中区达标名校2021-2022学年毕业升学考试模拟卷数学卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,民族图案是数学文化中的一块瑰宝等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是( )
A.主视图 B.俯视图 C.左视图 D.一样大
2.某商品的进价为每件元.当售价为每件元时,每星期可卖出件,现需降价处理,为占有市场份额,且经市场调查:每降价元,每星期可多卖出件.现在要使利润为元,每件商品应降价( )元.
A.3 B.2.5 C.2 D.5
3.抛物线y=x2+2x+3的对称轴是( )
A.直线x=1 B.直线x=-1
C.直线x=-2 D.直线x=2
4.如图,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于BD的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,则AF的长为( )
A.5 B.6 C.7 D.8
5.不等式4-2x>0的解集在数轴上表示为( )
A. B. C. D.
6.下列各式中,不是多项式2x2﹣4x+2的因式的是( )
A.2 B.2(x﹣1) C.(x﹣1)2 D.2(x﹣2)
7. “保护水资源,节约用水”应成为每个公民的自觉行为.下表是某个小区随机抽查到的10户家庭的月用水情况,则下列关于这10户家庭的月用水量说法错误的是( )
月用水量(吨)
4
5
6
9
户数(户)
3
4
2
1
A.中位数是5吨 B.众数是5吨 C.极差是3吨 D.平均数是5.3吨
8.民族图案是数学文化中的一块瑰宝.下列图案中,既不是中心对称图形也不是轴对称图形的是( )
A. B. C. D.
9.如图,点A为∠α边上任意一点,作AC⊥BC于点C,CD⊥AB于点D,下列用线段比表示cosα的值,错误的是( )
A. B. C. D.
10.菱形的两条对角线长分别是6cm和8cm,则它的面积是( )
A.6cm2 B.12cm2 C.24cm2 D.48cm2
11.一组数据3、2、1、2、2的众数,中位数,方差分别是( )
A.2,1,0.4 B.2,2,0.4
C.3,1,2 D.2,1,0.2
12.如图,⊙O的半径为1,△ABC是⊙O的内接三角形,连接OB、OC,若∠BAC与∠BOC互补,则弦BC的长为( )
A. B.2 C.3 D.1.5
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.在Rt△ABC中,∠C=90°,AB=6,cosB=,则BC的长为_____.
14.如果正比例函数y=(k-2)x的函数值y随x的增大而减小,且它的图象与反比例函数y=的图象没有公共点,那么k的取值范围是______.
15.在某一时刻,测得一根高为2m的竹竿的影长为1m,同时测得一栋建筑物的影长为9m,那么这栋建筑物的高度为_____m.
16.关于的一元二次方程有两个相等的实数根,则________.
17.如图,已知CD是Rt△ABC的斜边上的高,其中AD=9cm,BD=4cm,那么CD等于_______cm.
18.甲、乙两名学生练习打字,甲打135个字所用时间与乙打180个字所用时间相同,已知甲平均每分钟比乙少打20个字,如果设甲平均每分钟打字的个数为x,那么符合题意的方程为:______.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,在正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边上的动点,且AE=BF=CG=DH.
(1)求证:△AEH≌△CGF;
(2)在点E、F、G、H运动过程中,判断直线EG是否经过某一个定点,如果是,请证明你的结论;如果不是,请说明理由
20.(6分) 某品牌牛奶供应商提供A,B,C,D四种不同口味的牛奶供学生饮用.某校为了了解学生对不同口味的牛奶的喜好,对全校订牛奶的学生进行了随机调查,并根据调查结果绘制了如下两幅不完整的统计图.
根据统计图的信息解决下列问题:
本次调查的学生有多少人?补全上面的条形统计图;扇形统计图中C对应的中心角度数是 ;若该校有600名学生订了该品牌的牛奶,每名学生每天只订一盒牛奶,要使学生能喝到自己喜欢的牛奶,则该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约多少盒?
21.(6分)某校航模小组借助无人飞机航拍校园,如图,无人飞机从A处水平飞行至B处需10秒,A在地面C的北偏东12°方向,B在地面C的北偏东57°方向.已知无人飞机的飞行速度为4米/秒,求这架无人飞机的飞行高度.(结果精确到0.1米,参考数据:sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)
22.(8分)如图,抛物线y=ax2+bx+c与x轴相交于点A(﹣3,0),B(1,0),与y轴相交于(0,﹣),顶点为P.
(1)求抛物线解析式;
(2)在抛物线是否存在点E,使△ABP的面积等于△ABE的面积?若存在,求出符合条件的点E的坐标;若不存在,请说明理由;
(3)坐标平面内是否存在点F,使得以A、B、P、F为顶点的四边形为平行四边形?直接写出所有符合条件的点F的坐标,并求出平行四边形的面积.
23.(8分)太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业,如图是太阳能电池板支撑架的截面图,其中的粗线表示支撑角钢,太阳能电池板与支撑角钢AB的长度相同,均为300cm,AB的倾斜角为,BE=CA=50cm,支撑角钢CD,EF与底座地基台面接触点分别为D,F,CD垂直于地面,于点E.两个底座地基高度相同(即点D,F到地面的垂直距离相同),均为30cm,点A到地面的垂直距离为50cm,求支撑角钢CD和EF的长度各是多少cm(结果保留根号)
24.(10分)为有效治理污染,改善生态环境,山西太原成为国内首个实现纯电动出租车的城市,绿色环保的电动出租车受到市民的广泛欢迎,给市民的生活带来了很大的方便,下表是行驶路程在15公里以内时普通燃油出租车和纯电动出租车的运营价格:
车型
起步公里数
起步价格
超出起步公里数后的单价
普通燃油型
3
13元
2.3元/公里
纯电动型
3
8元
2元/公里
张先生每天从家打出租车去单位上班(路程在15公里以内),结果发现,正常情况下乘坐纯电动出租车比乘坐燃油出租车平均每公里节省0.8元,求张先生家到单位的路程.
25.(10分)化简:(x+7)(x-6)-(x-2)(x+1)
26.(12分)已知:如图,∠ABC=∠DCB,BD、CA分别是∠ABC、∠DCB 的平分线.
求证:AB=DC.
27.(12分)先化简,再求值:÷(﹣x+1),其中x=sin30°+2﹣1+.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】
如图,该几何体主视图是由5个小正方形组成,
左视图是由3个小正方形组成,
俯视图是由5个小正方形组成,
故三种视图面积最小的是左视图,
故选C.
2、A
【解析】
设售价为x元时,每星期盈利为6125元,那么每件利润为(x-40),原来售价为每件60元时,每星期可卖出300件,所以现在可以卖出[300+20(60-x)]件,然后根据盈利为6120元即可列出方程解决问题.
【详解】
解:设售价为x元时,每星期盈利为6120元,
由题意得(x-40)[300+20(60-x)]=6120,
解得:x1=57,x2=1,
由已知,要多占市场份额,故销售量要尽量大,即售价要低,故舍去x2=1.
∴每件商品应降价60-57=3元.
故选:A.
【点睛】
本题考查了一元二次方程的应用.此题找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.此题要注意判断所求的解是否符合题意,舍去不合题意的解.
3、B
【解析】
根据抛物线的对称轴公式:计算即可.
【详解】
解:抛物线y=x2+2x+3的对称轴是直线
故选B.
【点睛】
此题考查的是求抛物线的对称轴,掌握抛物线的对称轴公式是解决此题的关键.
4、B
【解析】
试题分析:连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=1.
∵作法可知BC=CD=4,CE是线段BD的垂直平分线,∴CD是斜边AB的中线,∴BD=AD=4,∴BF=DF=2,∴AF=AD+DF=4+2=2.故选B.
考点:作图—基本作图;含30度角的直角三角形.
5、D
【解析】
根据解一元一次不等式基本步骤:移项、系数化为1可得.
【详解】
移项,得:-2x>-4,
系数化为1,得:x<2,
故选D.
【点睛】
考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.
6、D
【解析】
原式分解因式,判断即可.
【详解】
原式=2(x2﹣2x+1)=2(x﹣1)2。
故选:D.
【点睛】
考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
7、C
【解析】
根据中位数、众数、极差和平均数的概念,对选项一一分析,即可选择正确答案.
【详解】
解:A、中位数=(5+5)÷2=5(吨),正确,故选项错误;
B、数据5吨出现4次,次数最多,所以5吨是众数,正确,故选项错误;
C、极差为9﹣4=5(吨),错误,故选项正确;
D、平均数=(4×3+5×4+6×2+9×1)÷10=5.3,正确,故选项错误.
故选:C.
【点睛】
此题主要考查了平均数、中位数、众数和极差的概念.要掌握这些基本概念才能熟练解题.
8、C
【解析】
分析:根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,
A、不是轴对称图形,是中心对称图形,故本选项错误;
B、是轴对称图形,也是中心对称图形,故本选项错误;
C、不是轴对称图形,也不是中心对称图形,故本选项正确;
D、是轴对称图形,也是中心对称图形,故本选项错误.
故选C.
9、D
【解析】
根据锐角三角函数的定义,余弦是邻边比斜边,可得答案.
【详解】
cosα=.
故选D.
【点睛】
熟悉掌握锐角三角函数的定义是关键.
10、C
【解析】
已知对角线的长度,根据菱形的面积计算公式即可计算菱形的面积.
【详解】
根据对角线的长可以求得菱形的面积,
根据S=ab=×6cm×8cm=14cm1.
故选:C.
【点睛】
考查菱形的面积公式,熟练掌握菱形面积的两种计算方法是解题的关键.
11、B
【解析】
试题解析:从小到大排列此数据为:1,2,2,2,3;数据2出现了三次最多为众数,2处在第3位为中位数.平均数为(3+2+1+2+2)÷5=2,方差为 [(3-2)2+3×(2-2)2+(1-2)2]=0.1,即中位数是2,众数是2,方差为0.1.
故选B.
12、A
【解析】
分析:作OH⊥BC于H,首先证明∠BOC=120,在Rt△BOH中,BH=OB•sin60°=1×,即可推出BC=2BH=,
详解:作OH⊥BC于H.
∵∠BOC=2∠BAC,∠BOC+∠BAC=180°,
∴∠BOC=120°,
∵OH⊥BC,OB=OC,
∴BH=HC,∠BOH=∠HOC=60°,
在Rt△BOH中,BH=OB•sin60°=1×=,
∴BC=2BH=.
故选A.
点睛:本题考查三角形的外接圆与外心、锐角三角函数、垂径定理等知识,解题的关键是学会添加常用辅助线.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、4
【解析】
根据锐角的余弦值等于邻边比对边列式求解即可.
【详解】
∵∠C=90°,AB=6,
∴,
∴BC=4.
【点睛】
本题考查了勾股定理和锐角三角函数的概念,熟练掌握锐角三角函数的定义是解答本题的关键.在Rt△ABC中, , ,.
14、
【解析】
先根据正比例函数y=(k-1)x的函数值y随x的增大而减小,可知k-1<0;再根据它的图象与反比例函数y=的图象没有公共点,说明反比例函数y=
的图象经过一、三象限,k>0,从而可以求出k的取值范围.
【详解】
∵y=(k-1)x的函数值y随x的增大而减小,
∴k-1<0
∴k<1
而y=(k-1)x的图象与反比例函数y=
的图象没有公共点,
∴k>0
综合以上可知:0<k<1.
故答案为0<k<1.
【点睛】
本题考查的是一次函数与反比例函数的相关性质,清楚掌握函数中的k的意义是解决本题的关键.
15、1
【解析】
分析:根据同时同地的物高与影长成正比列式计算即可得解.
详解:设这栋建筑物的高度为xm,
由题意得,,
解得x=1,
即这栋建筑物的高度为1m.
故答案为1.
点睛:同时同地的物高与影长成正比,利用相似三角形的相似比,列出方程,通过解方程求出这栋高楼的高度,体现了方程的思想.
16、-1.
【解析】
根据根的判别式计算即可.
【详解】
解:依题意得:
∵关于的一元二次方程有两个相等的实数根,
∴= =4-41(-k)=4+4k=0
解得,k=-1.
故答案为:-1.
【点睛】
本题考查了一元二次方程根的判别式,当=>0时,方程有两个不相等的实数根;当==0时,方程有两个相等的实数根;当=
相关试卷
这是一份深圳市福田区达标名校2021-2022学年毕业升学考试模拟卷数学卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,方程x2﹣3x+2=0的解是等内容,欢迎下载使用。
这是一份山东省德州市经开区重点达标名校2021-2022学年毕业升学考试模拟卷数学卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,已知等内容,欢迎下载使用。
这是一份海南省琼中县达标名校2021-2022学年毕业升学考试模拟卷数学卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,某一公司共有51名员工等内容,欢迎下载使用。